中华流行病学杂志
中華流行病學雜誌
중화류행병학잡지
CHINESE JOURNAL OF EPIDEMIOLOGY
2012年
9期
937-940
,共4页
高菡璐%兰莉%乔冬菊%赵娜%杨佳琦%邵冰%焦喆%李航%王滨有
高菡璐%蘭莉%喬鼕菊%趙娜%楊佳琦%邵冰%焦喆%李航%王濱有
고함로%란리%교동국%조나%양가기%소빙%초철%리항%왕빈유
BP神经网络%脑出血%气象%预测
BP神經網絡%腦齣血%氣象%預測
BP신경망락%뇌출혈%기상%예측
BP neural network%Intracerebral hemorrhage%Meteorology%Forecast
目的 探讨BP神经网络预测模型在分析气象因素与脑出血死亡率关系中的应用.方法 根据BP神经网络的特性,利用MATLAB 7.0软件的神经网络工具箱对2007-2009年哈尔滨市气象数据建立脑出血死亡率的BP神经网络预报模型,并与传统的多元线性回归模型进行比较.结果 利用多元线性回归结果显示脑出血死亡率与最高气温、最小相对湿度呈负相关,与平均相对湿度、日照时数呈正相关.脑出血死亡率的非线性相关系数(RNL)为0.7854,平均绝对误差百分比( MAPE)为0.21,均方误差(MSE)为0 22,平均绝对识差(MAE)为0.19,预测准确度(P)为81.31%,平均误差率为0.19.BP神经网络模型的拟合结果显示,脑出血死亡率的RNL为0 7967,MAPE 为0.19,MSE为0.21,MAE为0.18,P为82.53%,平均误差率为0.17.结论 应用BP神经网络预测模型对2010年哈尔滨市脑出血死亡率进行预报,通过与多元线性回归模型预报结果进行比较,表明该模型具有更高的预报准确度.
目的 探討BP神經網絡預測模型在分析氣象因素與腦齣血死亡率關繫中的應用.方法 根據BP神經網絡的特性,利用MATLAB 7.0軟件的神經網絡工具箱對2007-2009年哈爾濱市氣象數據建立腦齣血死亡率的BP神經網絡預報模型,併與傳統的多元線性迴歸模型進行比較.結果 利用多元線性迴歸結果顯示腦齣血死亡率與最高氣溫、最小相對濕度呈負相關,與平均相對濕度、日照時數呈正相關.腦齣血死亡率的非線性相關繫數(RNL)為0.7854,平均絕對誤差百分比( MAPE)為0.21,均方誤差(MSE)為0 22,平均絕對識差(MAE)為0.19,預測準確度(P)為81.31%,平均誤差率為0.19.BP神經網絡模型的擬閤結果顯示,腦齣血死亡率的RNL為0 7967,MAPE 為0.19,MSE為0.21,MAE為0.18,P為82.53%,平均誤差率為0.17.結論 應用BP神經網絡預測模型對2010年哈爾濱市腦齣血死亡率進行預報,通過與多元線性迴歸模型預報結果進行比較,錶明該模型具有更高的預報準確度.
목적 탐토BP신경망락예측모형재분석기상인소여뇌출혈사망솔관계중적응용.방법 근거BP신경망락적특성,이용MATLAB 7.0연건적신경망락공구상대2007-2009년합이빈시기상수거건립뇌출혈사망솔적BP신경망락예보모형,병여전통적다원선성회귀모형진행비교.결과 이용다원선성회귀결과현시뇌출혈사망솔여최고기온、최소상대습도정부상관,여평균상대습도、일조시수정정상관.뇌출혈사망솔적비선성상관계수(RNL)위0.7854,평균절대오차백분비( MAPE)위0.21,균방오차(MSE)위0 22,평균절대식차(MAE)위0.19,예측준학도(P)위81.31%,평균오차솔위0.19.BP신경망락모형적의합결과현시,뇌출혈사망솔적RNL위0 7967,MAPE 위0.19,MSE위0.21,MAE위0.18,P위82.53%,평균오차솔위0.17.결론 응용BP신경망락예측모형대2010년합이빈시뇌출혈사망솔진행예보,통과여다원선성회귀모형예보결과진행비교,표명해모형구유경고적예보준학도.
Objective Using the Back Propagation (BP) Neural Network Model to discover the relationship between meteorological factors and mortality of intracerebral hemorrhage,to provide evidence for developing an intracerebral hemorrhage prevention and control program,in Harbin.Methods Based on the characteristics of BP neural network,a neural network Toolbox of MATLAB 7.0 software was used to build Meteorological data of 2007-2009 with intracerebral hemorrhage mortality to predict the effect of BP neural network model,and to compare with the traditional multivariate linear regression model. Results Datas from the multivariate linear regrcssion indicated that the cerebral hemorrhage death mortality had a negative correlation with maximum temperatureand minimum humidity while having a positive correlation with the average relative humidity and the hours of sunshine.The linear correlation coefficient of intracerebral hemorrhage mortality was 0.7854,with mean absolute percentage (MAPE) as 0.21,mean square error (MSE) as 0.22,mean absolute error(MAE) as 0.19.The accuracy of forecasting was 81.31% with an average error rate as 0.19.The Fitting results of BP neural network model showed that non-linear correlation coefficient of intracerebral hemorrhage mortality was 0.7967,with MAPE as 0.19,MSE as 0.21,MAE as 0.18.The forecasting accuracy was 82.53% with the average error rate as 0.17.Conclusion The BP neural network model showed a higher forecasting accuracy when compared to the multiple linear regression model on intraccrebral hemorrhage mortality,using the data of 2010' s.