中华流行病学杂志
中華流行病學雜誌
중화류행병학잡지
CHINESE JOURNAL OF EPIDEMIOLOGY
2013年
7期
706-710
,共5页
任宏%王晔%陈明亮%袁政安%李燕婷%黄埔%胡家瑜
任宏%王曄%陳明亮%袁政安%李燕婷%黃埔%鬍傢瑜
임굉%왕엽%진명량%원정안%리연정%황포%호가유
猩红热%A组链球菌%发病特征%组合模型
猩紅熱%A組鏈毬菌%髮病特徵%組閤模型
성홍열%A조련구균%발병특정%조합모형
Scarlet fever%Group A Streptococcus%Epidemic characteristics%Combined mathematical model
目的 系统分析2005-2012年上海市猩红热发病特征及健康人群A组链球菌(GAS)携带状况,探讨健康人群GAS监测和组合模型预测技术在猩红热早期预警中的应用.方法 使用国家法定传染病报告数据分析上海市猩红热的流行特征.构建自回归移动平均模型(ARIMA)和人工神经网络(ANN)组合模型,对猩红热月度报告发病率进行分析和预测.采用GAS分离培养、菌型鉴定试验、emm分型和超抗原基因检测技术,监测猩红热流行期间健康人群GAS携带状况,并计算GAS标准化带菌率.结果 2005-2012年上海市共报告猩红热病例9410例,以散发为主,发病呈现季节性和周期性.2011年报告发病率达到高峰,年均报告发病率6.012/10万,患者以4~8岁年龄段托幼儿童和学生为主,郊区人群发病率显著高于市区,发病的性别差异无统计学意义.单纯ARIMA模型、ARIMA-GRNN组合模型和ARIMA-BPNN组合模型的平均相对误差(MER)分别为0.268、0.432和0.131.使用预测效果最优的ARIMA-BPNN组合模型进行预测,2013年1-6月上海市猩红热月度发病率将波动在0.446/10万至3.467/10万.2008年和2010年上海市<15岁社区健康人群未发现GAS带菌者,而2012年带菌率为1.180%,标准化带菌率为1.092%.2012年分离获得18株GAS,其中15株为emm 12.0型(83.33%).结论 上海市猩红热报告发病率将继续小幅上升.社区健康人群GAS带菌率监测和组合模型预测技术可用于猩红热的早期预警.
目的 繫統分析2005-2012年上海市猩紅熱髮病特徵及健康人群A組鏈毬菌(GAS)攜帶狀況,探討健康人群GAS鑑測和組閤模型預測技術在猩紅熱早期預警中的應用.方法 使用國傢法定傳染病報告數據分析上海市猩紅熱的流行特徵.構建自迴歸移動平均模型(ARIMA)和人工神經網絡(ANN)組閤模型,對猩紅熱月度報告髮病率進行分析和預測.採用GAS分離培養、菌型鑒定試驗、emm分型和超抗原基因檢測技術,鑑測猩紅熱流行期間健康人群GAS攜帶狀況,併計算GAS標準化帶菌率.結果 2005-2012年上海市共報告猩紅熱病例9410例,以散髮為主,髮病呈現季節性和週期性.2011年報告髮病率達到高峰,年均報告髮病率6.012/10萬,患者以4~8歲年齡段託幼兒童和學生為主,郊區人群髮病率顯著高于市區,髮病的性彆差異無統計學意義.單純ARIMA模型、ARIMA-GRNN組閤模型和ARIMA-BPNN組閤模型的平均相對誤差(MER)分彆為0.268、0.432和0.131.使用預測效果最優的ARIMA-BPNN組閤模型進行預測,2013年1-6月上海市猩紅熱月度髮病率將波動在0.446/10萬至3.467/10萬.2008年和2010年上海市<15歲社區健康人群未髮現GAS帶菌者,而2012年帶菌率為1.180%,標準化帶菌率為1.092%.2012年分離穫得18株GAS,其中15株為emm 12.0型(83.33%).結論 上海市猩紅熱報告髮病率將繼續小幅上升.社區健康人群GAS帶菌率鑑測和組閤模型預測技術可用于猩紅熱的早期預警.
목적 계통분석2005-2012년상해시성홍열발병특정급건강인군A조련구균(GAS)휴대상황,탐토건강인군GAS감측화조합모형예측기술재성홍열조기예경중적응용.방법 사용국가법정전염병보고수거분석상해시성홍열적류행특정.구건자회귀이동평균모형(ARIMA)화인공신경망락(ANN)조합모형,대성홍열월도보고발병솔진행분석화예측.채용GAS분리배양、균형감정시험、emm분형화초항원기인검측기술,감측성홍열류행기간건강인군GAS휴대상황,병계산GAS표준화대균솔.결과 2005-2012년상해시공보고성홍열병례9410례,이산발위주,발병정현계절성화주기성.2011년보고발병솔체도고봉,년균보고발병솔6.012/10만,환자이4~8세년령단탁유인동화학생위주,교구인군발병솔현저고우시구,발병적성별차이무통계학의의.단순ARIMA모형、ARIMA-GRNN조합모형화ARIMA-BPNN조합모형적평균상대오차(MER)분별위0.268、0.432화0.131.사용예측효과최우적ARIMA-BPNN조합모형진행예측,2013년1-6월상해시성홍열월도발병솔장파동재0.446/10만지3.467/10만.2008년화2010년상해시<15세사구건강인군미발현GAS대균자,이2012년대균솔위1.180%,표준화대균솔위1.092%.2012년분리획득18주GAS,기중15주위emm 12.0형(83.33%).결론 상해시성홍열보고발병솔장계속소폭상승.사구건강인군GAS대균솔감측화조합모형예측기술가용우성홍열적조기예경.
Objective To systemically analyze the epidemiological characteristics,molecular markers of circulating group A Streptococcus (GAS) isolates and the incidence trend of scarlet fever in Shanghai from 2005 to 2012 as well as to explore the practice of GAS isolates surveillance program and the combined mathematical model in the early warning of scarlet fever.Methods The morbidity series of scarlet fever were retrieved to analyze and fit the combined mathematical model which comprised an autoregressive integrated moving average (ARIMA) model and a neural network.GAS isolates surveillances programs were implemented on community healthy population,using the emm typing and superantigens detecting method in Shanghai during the epidemic period of scarlet fever in 2008,2010 and 2012.The standardized prevalence of GAS isolates was estimated with the demographic data.Results From 2005 to 2012,there were a total of 9410 scarlet fever cases reported in Shanghai including local registered residents and immigrant population,showing that the distribution of patients as sporadic.The morbidity kept rising with seasonal and periodical variations and the peak was in 2011.The average morbidity was 6.012 per 100 000 persons.Morbidity in the the suburban was significantly higher than that in the urban areas.Children at 4 to 8 years old were easy to be involved.The mean error rate of single ARIMA model,ARIMA-GRNN and back propagation artificial neural network combined model were 0.268,0.432 and 0.131 respectively.The predicted incidence of scarlet fever in 2013 would keep fluctuating within a narrow range from 0.446 to 3.467 per 100 000 persons.A total number of 4409 throat swab samples were collected through the GAS isolates surveillance programs in 2008,2010 and 2012.The standardized prevalence of GAS isolates in each year were 0.000%,0.000% and 1.092%.18 GAS isolates were identified and 15 isolates (83.33%) belonged to emm 12.0.Conclusion The morbidity of scarlet fever would continue to maintain an upward trend in Shanghai and the techniques used in GAS isolates surveillance program and in the combined mathematical model could be applied for the early warning system on scarlet fever.