计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
7期
81-84
,共4页
入侵取证%朴素贝叶斯%加权朴素贝叶斯%信息增益%特征冗余度%属性加权
入侵取證%樸素貝葉斯%加權樸素貝葉斯%信息增益%特徵冗餘度%屬性加權
입침취증%박소패협사%가권박소패협사%신식증익%특정용여도%속성가권
intrusion forensics%Naive Bayes%Weighted Naive Baye%Information Gain%feature redundancy%attribute weighted
针对传统朴素贝叶斯分类模型在入侵取证中存在的特征项冗余问题,以及没有考虑入侵行为所涉及的数据属性间的差别问题,提出一种基于改进的属性加权朴素贝叶斯分类方法.用一种改进的基于特征冗余度的信息增益算法对特征项集进行优化,并在此优化结果的基础上,提取出其中的特征冗余度判别函数作为权值引入贝叶斯分类算法中,对不同的条件属性赋予不同的权值.经实验验证,该算法能有效地选择特征向量,降低分类干扰,提高检测精度.
針對傳統樸素貝葉斯分類模型在入侵取證中存在的特徵項冗餘問題,以及沒有攷慮入侵行為所涉及的數據屬性間的差彆問題,提齣一種基于改進的屬性加權樸素貝葉斯分類方法.用一種改進的基于特徵冗餘度的信息增益算法對特徵項集進行優化,併在此優化結果的基礎上,提取齣其中的特徵冗餘度判彆函數作為權值引入貝葉斯分類算法中,對不同的條件屬性賦予不同的權值.經實驗驗證,該算法能有效地選擇特徵嚮量,降低分類榦擾,提高檢測精度.
침대전통박소패협사분류모형재입침취증중존재적특정항용여문제,이급몰유고필입침행위소섭급적수거속성간적차별문제,제출일충기우개진적속성가권박소패협사분류방법.용일충개진적기우특정용여도적신식증익산법대특정항집진행우화,병재차우화결과적기출상,제취출기중적특정용여도판별함수작위권치인입패협사분류산법중,대불동적조건속성부여불동적권치.경실험험증,해산법능유효지선택특정향량,강저분류간우,제고검측정도.
@@@@Traditional Naive Bayes classification exists the issues of feature redundancy in intrusion forensics and neglects the difference between data attributes in different intrusion actions. For these issues, an improved Weighted Naive Bayes classification method by setting attribute weights is proposed. A new Information Gain algorithm based on feature redundancy is used to opti-mize the set of feature, then the discriminant of feature redundancy extracted as weights is introduced to Bayes classification algorithm based on this optimization results. The different condition attributes are weighted differently. The experimental results show that the new algorithm can effectively select features, reduce classification interference and improve detection accuracy.