农业工程学报
農業工程學報
농업공정학보
2013年
8期
187-194
,共8页
关海鸥%杜松怀%李春兰%苏娟*%梁英%武子超%邵利敏
關海鷗%杜鬆懷%李春蘭%囌娟*%樑英%武子超%邵利敏
관해구%두송부%리춘란%소연*%량영%무자초%소리민
农村地区%泄漏电流%神经网络%FIR数字滤波器%窗函数%径向基函数%触电信号识别
農村地區%洩漏電流%神經網絡%FIR數字濾波器%窗函數%徑嚮基函數%觸電信號識彆
농촌지구%설루전류%신경망락%FIR수자려파기%창함수%경향기함수%촉전신호식별
rural areas%leakage currents%neural networks%FIR digital filter%window function radial basis function%electric shock signal detection
针对农村低压电网剩余电流保护与动作技术中,如何检测总泄漏电流中人体触电支路电流的难题,该文利用严格线性相位与任意幅度特性的FIR(finite impulse response)数字滤波技术和具有自适应性与最佳逼近特性的RBF(radial basis function)神经网络有机结合,提出一种基于FIR数字滤波的RBF神经网络作为触电电流信号的检测方法.首先,采用FIR数字滤波器选定合适的窗函数和滤波阶数,对触电试验获得的总泄漏电流及触电电流进行滤波预处理;然后,将预处理后的信号波形作为样本集,选定适合的RBF函数,建立从总泄漏电流中提取触电电流波形的3层RBF神经网络模型.仿真试验结果表明:该方法速度快且稳定,检测值与实际值的平均相对误差为3.76%,具有良好的适应性和实用性,对于研制新一代剩余电流保护动作装置具有重要意义.
針對農村低壓電網剩餘電流保護與動作技術中,如何檢測總洩漏電流中人體觸電支路電流的難題,該文利用嚴格線性相位與任意幅度特性的FIR(finite impulse response)數字濾波技術和具有自適應性與最佳逼近特性的RBF(radial basis function)神經網絡有機結閤,提齣一種基于FIR數字濾波的RBF神經網絡作為觸電電流信號的檢測方法.首先,採用FIR數字濾波器選定閤適的窗函數和濾波階數,對觸電試驗穫得的總洩漏電流及觸電電流進行濾波預處理;然後,將預處理後的信號波形作為樣本集,選定適閤的RBF函數,建立從總洩漏電流中提取觸電電流波形的3層RBF神經網絡模型.倣真試驗結果錶明:該方法速度快且穩定,檢測值與實際值的平均相對誤差為3.76%,具有良好的適應性和實用性,對于研製新一代剩餘電流保護動作裝置具有重要意義.
침대농촌저압전망잉여전류보호여동작기술중,여하검측총설루전류중인체촉전지로전류적난제,해문이용엄격선성상위여임의폭도특성적FIR(finite impulse response)수자려파기술화구유자괄응성여최가핍근특성적RBF(radial basis function)신경망락유궤결합,제출일충기우FIR수자려파적RBF신경망락작위촉전전류신호적검측방법.수선,채용FIR수자려파기선정합괄적창함수화려파계수,대촉전시험획득적총설루전류급촉전전류진행려파예처리;연후,장예처리후적신호파형작위양본집,선정괄합적RBF함수,건립종총설루전류중제취촉전전류파형적3층RBF신경망락모형.방진시험결과표명:해방법속도쾌차은정,검측치여실제치적평균상대오차위3.76%,구유량호적괄응성화실용성,대우연제신일대잉여전류보호동작장치구유중요의의.
@@@@Residual current protection device (RCD) has been widely used in low-voltage, rural power grids because it plays a very important role in avoiding physical shock, equipment damage, and electrical fires, etc, caused by leakage. At present, a setting value of leakage current can often be used as a key action for RCD. However, the electric shock current signal of the human body cannot be detected, and when unexpected current values close to or more than the setting value emerge, this will lead to the malfunction of RCD. In order to overcome the shortcomings above, we present a new recognition method for electric shock signal using digital filter technology and radial basis neural network. The method has three main stages. First, total leakage current and electric short current has been pre-processed using the finite impulse response digital filtering, which was designed by choosing suitable window functions and filter order. Second, the pre-processed signals are trained to create a three-level radial basis neural network. Last, the electric short current can be recognized by inputting the filtered total leakage current signal to the radial basis neural network, thus establishing the detection model. Experiments showed that the proposed method achieves an average relative error of 3.76% between detected value and actual value. The robustness, adaptability, and practicality of the proposed method also have been proven by the results. The proposed method made a definite practical significance for developing a new device of residual current protection.