软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2013年
3期
465-475
,共11页
石崇林%淦文燕%吴琳%张茂军%唐宇波
石崇林%淦文燕%吳琳%張茂軍%唐宇波
석숭림%감문연%오림%장무군%당우파
计算机兵棋%数据挖掘%轨迹聚类%相似性度量%密度估计熵
計算機兵棋%數據挖掘%軌跡聚類%相似性度量%密度估計熵
계산궤병기%수거알굴%궤적취류%상사성도량%밀도고계적
computer wargame%data mining%trajectory clustering%similarity measure%density estimation entropy
针对计算机兵棋系统的实际应用,提出计算机兵棋实体轨迹聚类算法——CTECW(clustering trajectories of entities in computer wargames).算法分为3部分:轨迹预处理、轨迹分段聚类以及可视化表现.轨迹预处理将实体原始轨迹转化成实体简化轨迹,再进一步处理成轨迹分段;在DBSCAN算法的基本框架下引入DENCLUE算法中密度函数的概念,并基于提出的相似性度量函数对轨迹分段进行聚类;可视化表现将轨迹分段聚类的结果以赋有军事涵义的形式展现给参与兵棋推演的受训指挥员,体现出算法的实际应用价值.理论分析与实验结果表明,CTECW 算法能够得到与TRACLUS算法比较接近的聚类结果,但计算效率却比TRACLUS算法要高,并且聚类结果不依赖于用户参数的仔细选择.
針對計算機兵棋繫統的實際應用,提齣計算機兵棋實體軌跡聚類算法——CTECW(clustering trajectories of entities in computer wargames).算法分為3部分:軌跡預處理、軌跡分段聚類以及可視化錶現.軌跡預處理將實體原始軌跡轉化成實體簡化軌跡,再進一步處理成軌跡分段;在DBSCAN算法的基本框架下引入DENCLUE算法中密度函數的概唸,併基于提齣的相似性度量函數對軌跡分段進行聚類;可視化錶現將軌跡分段聚類的結果以賦有軍事涵義的形式展現給參與兵棋推縯的受訓指揮員,體現齣算法的實際應用價值.理論分析與實驗結果錶明,CTECW 算法能夠得到與TRACLUS算法比較接近的聚類結果,但計算效率卻比TRACLUS算法要高,併且聚類結果不依賴于用戶參數的仔細選擇.
침대계산궤병기계통적실제응용,제출계산궤병기실체궤적취류산법——CTECW(clustering trajectories of entities in computer wargames).산법분위3부분:궤적예처리、궤적분단취류이급가시화표현.궤적예처리장실체원시궤적전화성실체간화궤적,재진일보처리성궤적분단;재DBSCAN산법적기본광가하인입DENCLUE산법중밀도함수적개념,병기우제출적상사성도량함수대궤적분단진행취류;가시화표현장궤적분단취류적결과이부유군사함의적형식전현급삼여병기추연적수훈지휘원,체현출산법적실제응용개치.이론분석여실험결과표명,CTECW 산법능구득도여TRACLUS산법비교접근적취류결과,단계산효솔각비TRACLUS산법요고,병차취류결과불의뢰우용호삼수적자세선택.
@@@@Under the background of a computer wargame system, a trajectory clustering algorithm named CTECW (clustering trajectories of entities in computer wargames) is proposed. The algorithm is composed of three parts: trajectory pretreatment, trajectory segments clustering, and visual presentation. Trajectory pretreatment transforms original trajectories into simplified ones which are ulteriorly processed into linear segments. In the second part, the concept of density function derived from DENCLUE is introduced and trajectory segments are clustered based on similarity measure under the framework of DBSCAN. The visual presentation exhibits clusters of trajectory segments with martial meanings to trainees, which embodies practical values of CTECW. Both theoretical analysis and experimental results indicate that CTECW could acquire approximate clusters more efficiently compared with TRACLUS and requires no input parameters.