软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2013年
3期
639-650
,共12页
最大密度投影%视觉感知%局部光照模型%梯度%区域增长
最大密度投影%視覺感知%跼部光照模型%梯度%區域增長
최대밀도투영%시각감지%국부광조모형%제도%구역증장
maximum intensity projection%visual perception%local illumination model%gradient%region growing
提出一种基于视觉感知增强的最大密度投影算法,无需调节复杂的传输函数,就可以有效增强体数据内部最大密度特征的深度感知和形状感知.在传统的最大密度投影算法的基础上,利用梯度模属性精确查找特征或相似特征的边界,以确定最佳法向特征;利用最佳法向特征的深度信息自适应地修改局部光照系数,进而对最大密度特征进行光照处理,以获得视觉感知增强的可视化结果;采用基于密度值和三维空间距离的双阈值区域增长策略,动态区分感兴趣区域和背景区域,交互地实现特征突出显示.实验结果表明,该算法在传统算法的基础上进一步增强了最大密度特征的视觉感知,并提供了丰富的形状信息和背景补偿信息,具有较强的实用性.
提齣一種基于視覺感知增彊的最大密度投影算法,無需調節複雜的傳輸函數,就可以有效增彊體數據內部最大密度特徵的深度感知和形狀感知.在傳統的最大密度投影算法的基礎上,利用梯度模屬性精確查找特徵或相似特徵的邊界,以確定最佳法嚮特徵;利用最佳法嚮特徵的深度信息自適應地脩改跼部光照繫數,進而對最大密度特徵進行光照處理,以穫得視覺感知增彊的可視化結果;採用基于密度值和三維空間距離的雙閾值區域增長策略,動態區分感興趣區域和揹景區域,交互地實現特徵突齣顯示.實驗結果錶明,該算法在傳統算法的基礎上進一步增彊瞭最大密度特徵的視覺感知,併提供瞭豐富的形狀信息和揹景補償信息,具有較彊的實用性.
제출일충기우시각감지증강적최대밀도투영산법,무수조절복잡적전수함수,취가이유효증강체수거내부최대밀도특정적심도감지화형상감지.재전통적최대밀도투영산법적기출상,이용제도모속성정학사조특정혹상사특정적변계,이학정최가법향특정;이용최가법향특정적심도신식자괄응지수개국부광조계수,진이대최대밀도특정진행광조처리,이획득시각감지증강적가시화결과;채용기우밀도치화삼유공간거리적쌍역치구역증장책략,동태구분감흥취구역화배경구역,교호지실현특정돌출현시.실험결과표명,해산법재전통산법적기출상진일보증강료최대밀도특정적시각감지,병제공료봉부적형상신식화배경보상신식,구유교강적실용성.
@@@@This paper proposed a maximum intensity projection method to enhance the depth and shape perception of the internal maximum intensity features, without a sophisticated or time-consuming transfer function specification. On the basis of a traditional maximum intensity projection, the study first searched for the boundary sample with a similar intensity value and the optimal normal in front of the maximum intensity feature. Through by comparing the intensity and gradient norm. Next, the local illumination coefficients were updated according to the depth of boundary structures, the consequential depth-based shading results largely enhanced the depth, and the shape perception of internal feasible structures. A two-threshold region growing scheme was designed to perform and further highlight the features of interest. The seed was selected by users interactively on the rendered image, and the growing process depended on the intensity values and 3D spatial distances of the boundary samples with optimal normal. The comparison results showed that the proposed method provided more depth cues and shape information of the maximum intensity features than traditional methods and had practical applications in medical and engineering fields.