通信学报
通信學報
통신학보
JOURNAL OF CHINA INSTITUTE OF COMMUNICATIONS
2013年
3期
14-22
,共9页
吴健%崔志明%时玉杰%盛胜利%龚声蓉
吳健%崔誌明%時玉傑%盛勝利%龔聲蓉
오건%최지명%시옥걸%성성리%공성용
谱聚类%相似矩阵%局部密度%无向图构建%边介数
譜聚類%相似矩陣%跼部密度%無嚮圖構建%邊介數
보취류%상사구진%국부밀도%무향도구건%변개수
spectral clustering%similarity matrix%local density%undirected graph building%edge betweenness
依据样本数据点分布的局部和全局一致性特征,提出了一种基于局部密度构造相似矩阵的谱聚类算法.首先通过分析样本数据点的分布特性给出了局部密度定义,根据样本点的局部密度对样本点集由密到疏排序,并按照设计的连接策略构建无向图;然后以GN算法思想为参考,给出了一种基于边介数的权值矩阵计算方法,经过数据转换得到谱聚类相似矩阵;最后通过第一个极大本征间隙出现的位置来确定类个数,并利用经典聚类方法对特征向量空间中的数据点进行聚类.通过人工仿真数据集和UCI数据集进行测试,实验结果表明本文谱聚类算法具有较好的顽健性.
依據樣本數據點分佈的跼部和全跼一緻性特徵,提齣瞭一種基于跼部密度構造相似矩陣的譜聚類算法.首先通過分析樣本數據點的分佈特性給齣瞭跼部密度定義,根據樣本點的跼部密度對樣本點集由密到疏排序,併按照設計的連接策略構建無嚮圖;然後以GN算法思想為參攷,給齣瞭一種基于邊介數的權值矩陣計算方法,經過數據轉換得到譜聚類相似矩陣;最後通過第一箇極大本徵間隙齣現的位置來確定類箇數,併利用經典聚類方法對特徵嚮量空間中的數據點進行聚類.通過人工倣真數據集和UCI數據集進行測試,實驗結果錶明本文譜聚類算法具有較好的頑健性.
의거양본수거점분포적국부화전국일치성특정,제출료일충기우국부밀도구조상사구진적보취류산법.수선통과분석양본수거점적분포특성급출료국부밀도정의,근거양본점적국부밀도대양본점집유밀도소배서,병안조설계적련접책략구건무향도;연후이GN산법사상위삼고,급출료일충기우변개수적권치구진계산방법,경과수거전환득도보취류상사구진;최후통과제일개겁대본정간극출현적위치래학정류개수,병이용경전취류방법대특정향량공간중적수거점진행취류.통과인공방진수거집화UCI수거집진행측시,실험결과표명본문보취류산법구유교호적완건성.
@@@@According to local and global consistency characteristics of sample data points’ distribution, a spectral cluster-ing algorithm using local density-based similarity matrix construction was proposed. Firstly, by analyzing distribution characteristics of sample data points, the definition of local density was given, sorting operation on sample point set from dense to sparse according to sample points’ local density was did, and undirected graph in accordance with the designed connection strategy was constructed;then, on the basis of GN algorithm’s thinking, a calculation method of weight matrix using edge betweenness was given, and similarity matrix of spectral clustering via data conversion was got; lastly, the class number by appearing position of the first eigengap maximum was determined, and the classification of sample point set in eigenvector space by means of classical clustering method was realized. By means of artificial simulative data set and UCI data set to carry out the experimental tests, results show that the proposed spectral algorithm has better cluster-ing capability.