物理学报
物理學報
물이학보
2013年
8期
084101-1-084101-7
,共1页
徐新河?%吴夏%肖绍球%甘月红%王秉中
徐新河?%吳夏%肖紹毬%甘月紅%王秉中
서신하?%오하%초소구%감월홍%왕병중
磁电超材料%周期性结构%负折射率
磁電超材料%週期性結構%負摺射率
자전초재료%주기성결구%부절사솔
magnetoelectric metamaterials%periodic structure%negative refractive index
基于麦克斯韦旋度方程,将磁电超材料板中的电元件和磁元件分别等效为面电流和面磁流,通过计算这些周期性面电流和面磁流在某个磁电超材料板上产生的总电场和总磁场,获得了关于面磁流密度和面电流密度的两个方程,进而推导出了周期性磁电超材料折射率与磁元件的磁导率、电元件的介电常数和空间色散项之间关系的解析公式.与传统的折射率计算公式不同,该解析公式充分考虑到了空间色散以及磁电超材料的电元件和磁元件的相互作用.折射率理论曲线和基于仿真实验数据的提取值曲线能很好地符合,这说明文中推导的折射率公式能够正确地描述磁电超材料的负折射特性.本文的结果将为分析电磁元件之间的相互作用以及设计负折射率符合一定要求的磁电超材料提供重要的理论参考.
基于麥剋斯韋鏇度方程,將磁電超材料闆中的電元件和磁元件分彆等效為麵電流和麵磁流,通過計算這些週期性麵電流和麵磁流在某箇磁電超材料闆上產生的總電場和總磁場,穫得瞭關于麵磁流密度和麵電流密度的兩箇方程,進而推導齣瞭週期性磁電超材料摺射率與磁元件的磁導率、電元件的介電常數和空間色散項之間關繫的解析公式.與傳統的摺射率計算公式不同,該解析公式充分攷慮到瞭空間色散以及磁電超材料的電元件和磁元件的相互作用.摺射率理論麯線和基于倣真實驗數據的提取值麯線能很好地符閤,這說明文中推導的摺射率公式能夠正確地描述磁電超材料的負摺射特性.本文的結果將為分析電磁元件之間的相互作用以及設計負摺射率符閤一定要求的磁電超材料提供重要的理論參攷.
기우맥극사위선도방정,장자전초재료판중적전원건화자원건분별등효위면전류화면자류,통과계산저사주기성면전류화면자류재모개자전초재료판상산생적총전장화총자장,획득료관우면자류밀도화면전류밀도적량개방정,진이추도출료주기성자전초재료절사솔여자원건적자도솔、전원건적개전상수화공간색산항지간관계적해석공식.여전통적절사솔계산공식불동,해해석공식충분고필도료공간색산이급자전초재료적전원건화자원건적상호작용.절사솔이론곡선화기우방진실험수거적제취치곡선능흔호지부합,저설명문중추도적절사솔공식능구정학지묘술자전초재료적부절사특성.본문적결과장위분석전자원건지간적상호작용이급설계부절사솔부합일정요구적자전초재료제공중요적이론삼고.
@@@@Based on Maxwell’s curl equations, the electric component and the magnetic component in magnetoelectric metamaterial plate are equivalent to the surface electric current and the surface magnetic current respectively. By calculating the total electric field and the total magnetic field in a magnetoelectric metamaterial plate generated by these periodic surface electric currents and magnetic currents, we obtain two equations about the surface current density and the surface magnetic current density, and thus deduce the analytical formulas for relationship between the refractive index of periodic magnetoelectric metamaterial and permeability of the magnetic component, and that between permittivity of the electric component and spatial dispersion. Unlike traditional index formula, the analytical formulas fully consider the spatial dispersion and the interaction of the electrical component and the magnetic component. The theoretical curves for refractive index are found to be in good agreement with the retrieval curves from simulation data, which shows that the analytical formulas for the refractive index can correctly describe the negative refraction characteristics of the magnetoelectric metamaterials. Our work will provide important theoretical reference for researchers to analyze interaction between electromagnetic components and to design magnetoelectric metamaterials with negative refractive indexes which meet certain requirements.