物理学报
物理學報
물이학보
2013年
8期
084705-1-084705-14
,共1页
黄文昊%尤云祥?%王旭%胡天群
黃文昊%尤雲祥?%王旭%鬍天群
황문호%우운상?%왕욱%호천군
两层流体%内孤立波%双板造波%临界色散参数
兩層流體%內孤立波%雙闆造波%臨界色散參數
량층류체%내고립파%쌍판조파%림계색산삼수
two-layer fluid%internal solitary wave%double-plate wave-making%critical dispersion parameter
将置于大尺度密度分层水槽上下层流体中的两块垂直板反方向平推,以基于Miyata-Choi-Camassa (MCC)理论解的内孤立波诱导上下层流体中的层平均水平速度作为其运动速度,发展了一种振幅可控的双推板内孤立波实验室造波方法.在此基础上,针对有限深两层流体中定态内孤立波Korteweg-de Vries (KdV),扩展KdV (eKdV), MCC和修改的KdV (mKdV)理论的适用性条件等问题,开展了系列实验研究.结果表明,对以水深为基准定义的非线性参数ε和色散参数μ,存在一个临界色散参数μ0,当μ<μ0时, KdV理论适用于εμ的情况, eKdV理论适用于μ<ε√μ的情况,而MCC理论适用于ε>√μ的情况,而且当μμ0时MCC理论也是适用的.结果进一步表明,当上下层流体深度比并不接近其临界值时, mKdV理论主要适用于内孤立波振幅接近其理论极限振幅的情况,但这时MCC理论同样适用.本项研究定量地表征了四类内孤立波理论的适用性条件,为采用何种理论来表征实际海洋中的内孤立波特征提供了理论依据.
將置于大呎度密度分層水槽上下層流體中的兩塊垂直闆反方嚮平推,以基于Miyata-Choi-Camassa (MCC)理論解的內孤立波誘導上下層流體中的層平均水平速度作為其運動速度,髮展瞭一種振幅可控的雙推闆內孤立波實驗室造波方法.在此基礎上,針對有限深兩層流體中定態內孤立波Korteweg-de Vries (KdV),擴展KdV (eKdV), MCC和脩改的KdV (mKdV)理論的適用性條件等問題,開展瞭繫列實驗研究.結果錶明,對以水深為基準定義的非線性參數ε和色散參數μ,存在一箇臨界色散參數μ0,噹μ<μ0時, KdV理論適用于εμ的情況, eKdV理論適用于μ<ε√μ的情況,而MCC理論適用于ε>√μ的情況,而且噹μμ0時MCC理論也是適用的.結果進一步錶明,噹上下層流體深度比併不接近其臨界值時, mKdV理論主要適用于內孤立波振幅接近其理論極限振幅的情況,但這時MCC理論同樣適用.本項研究定量地錶徵瞭四類內孤立波理論的適用性條件,為採用何種理論來錶徵實際海洋中的內孤立波特徵提供瞭理論依據.
장치우대척도밀도분층수조상하층류체중적량괴수직판반방향평추,이기우Miyata-Choi-Camassa (MCC)이론해적내고립파유도상하층류체중적층평균수평속도작위기운동속도,발전료일충진폭가공적쌍추판내고립파실험실조파방법.재차기출상,침대유한심량층류체중정태내고립파Korteweg-de Vries (KdV),확전KdV (eKdV), MCC화수개적KdV (mKdV)이론적괄용성조건등문제,개전료계렬실험연구.결과표명,대이수심위기준정의적비선성삼수ε화색산삼수μ,존재일개림계색산삼수μ0,당μ<μ0시, KdV이론괄용우εμ적정황, eKdV이론괄용우μ<ε√μ적정황,이MCC이론괄용우ε>√μ적정황,이차당μμ0시MCC이론야시괄용적.결과진일보표명,당상하층류체심도비병불접근기림계치시, mKdV이론주요괄용우내고립파진폭접근기이론겁한진폭적정황,단저시MCC이론동양괄용.본항연구정량지표정료사류내고립파이론적괄용성조건,위채용하충이론래표정실제해양중적내고립파특정제공료이론의거.
@@@@A laboratory wave-making method is developed for the internal solitary wave under the condition of giving its amplitude produced by oppositely and horizontally pushing two vertical plates placed separately in the upper-and lower-layer fluids of a large-scale density stratified tank where based on the Miyata-Choi-Camassa (MCC) theoretical model, the layer-mean velocities of the upper-and lower-layer fluids induced by the internal solitary wave are used as the velocities of the two plates. On this basis, a series of experiments is conducted to explore the applicability conditions for internal solitary wave theories with stationary solutions which are Korteweg-de Vries (KdV), extended KdV (eKdV), MCC and modified KdV (mKdV) models in a two-layer fluid of finite depth respectively. It is shown that for the nonlinear parameterε and the dispersion parameter μ defined by the total water depth, there exists a critical dispersion parameter μ0, in the case of μ<μ0, the KdV model is applicable forε μ, the eKdV model is applicable for μ<ε √μ, as well as the MCC model is applicable forε>√μ. However, in the case of μ μ0, the MCC model is still applicable for a wide range ofε. Furthermore, for the case where the ratio of depth between the upper-and lower-layer fluids is not close to its critical value, the mKdV model is mainly applicable for the case where the amplitude of the internal solitary wave is close to its theoretical limiting amplitude, however, the MCC model is also applicable for such a case. The investigation quantitatively characterizes the applicability conditions for four classes of internal solitary wave theories, and provides an important theoretical foundation for what kinds of theories can be chosen to model internal solitary waves in the ocean.