物理学报
物理學報
물이학보
2013年
8期
087301-1-087301-8
,共1页
紧束缚模型%石墨烯%边缘态%态密度
緊束縳模型%石墨烯%邊緣態%態密度
긴속박모형%석묵희%변연태%태밀도
the tight-binding model%graphene%edge state%density of states
根据π电子的紧束缚模型,通过有限系统的Bloch定理方法,解析计算了有限尺寸石墨烯的电子态和能带.研究发现,其电子态有且只有两类,分别是驻波态和边缘态.驻波态时,波函数形式是两个方向都是正弦函数;边缘态时,波函数形式是Armchair边界的方向是双曲正弦函数, Zigzag边界的方向是正弦函数.其能带由总碳原子数N个离散的本征值组成,推导了定量计算边缘态的本征值个数的表达式,并通过态密度来分析边缘态的存在和与无限大情况的一致性.所有的分析中数值结果与解析理论都完全一致,当两个受限方向都变成无限长时,可以得到与无限大石墨烯相同的结果.
根據π電子的緊束縳模型,通過有限繫統的Bloch定理方法,解析計算瞭有限呎吋石墨烯的電子態和能帶.研究髮現,其電子態有且隻有兩類,分彆是駐波態和邊緣態.駐波態時,波函數形式是兩箇方嚮都是正絃函數;邊緣態時,波函數形式是Armchair邊界的方嚮是雙麯正絃函數, Zigzag邊界的方嚮是正絃函數.其能帶由總碳原子數N箇離散的本徵值組成,推導瞭定量計算邊緣態的本徵值箇數的錶達式,併通過態密度來分析邊緣態的存在和與無限大情況的一緻性.所有的分析中數值結果與解析理論都完全一緻,噹兩箇受限方嚮都變成無限長時,可以得到與無限大石墨烯相同的結果.
근거π전자적긴속박모형,통과유한계통적Bloch정리방법,해석계산료유한척촌석묵희적전자태화능대.연구발현,기전자태유차지유량류,분별시주파태화변연태.주파태시,파함수형식시량개방향도시정현함수;변연태시,파함수형식시Armchair변계적방향시쌍곡정현함수, Zigzag변계적방향시정현함수.기능대유총탄원자수N개리산적본정치조성,추도료정량계산변연태적본정치개수적표체식,병통과태밀도래분석변연태적존재화여무한대정황적일치성.소유적분석중수치결과여해석이론도완전일치,당량개수한방향도변성무한장시,가이득도여무한대석묵희상동적결과.
@@@@The limited graphene means that two directions of graphene are limited, one is zigzag type boundary and the other is armchair type boundary. Based on the tight-binding model, the electronic state and band of the limited graphene are given analytically. The results show that there are only two kinds of electronic states, i.e., the standing wave state and edge state. For the standing wave state, the wave function is in the form of sine function in two directions;for the edge state, the wave function is in the form of hyperbolic sine function in the direction of armchair boundary and in the form of sine function in the direction of zigzag boundary. The band is composited of total carbon atom number N discrete eigenvalues. The expression of quantitativly calculating the number of eigenvalues of edge state is deduced. Through the density of states of the limited graphene we analyze the existence of the edge state and the consistency in the infinity case. The results from the analitical method are the same as the numerical resullts. When the width of two restricted boundary goes into infinity, the result of the limited graphene tends to that in the infinity case.