物理学报
物理學報
물이학보
2013年
6期
464-469
,共6页
任兴荣?%柴常春%马振洋%杨银堂%乔丽萍%史春蕾
任興榮?%柴常春%馬振洋%楊銀堂%喬麗萍%史春蕾
임흥영?%시상춘%마진양%양은당%교려평%사춘뢰
双极晶体管%强电磁脉冲%烧毁点位置%损伤能量
雙極晶體管%彊電磁脈遲%燒燬點位置%損傷能量
쌍겁정체관%강전자맥충%소훼점위치%손상능량
bipolar transistor%intense electromagnetic pulse%damage location%damage energy
建立了双极晶体管(BJT)在强电磁脉冲作用下的二维电热模型,对处于有源放大区的BJT在基极注入强电磁脉冲时的瞬态响应进行了仿真.结果表明, BJT烧毁点位置随注入脉冲幅度变化而变化,低脉冲幅度下晶体管烧毁是由发射结反向雪崩击穿所致,烧毁点位于发射结柱面区;而在高脉冲幅度下,由基区-外延层-衬底组成的p-n-n+二极管发生二次击穿导致靠近发射极一侧的基极边缘率先烧毁;BJT的烧毁时间随脉冲幅度升高而减小,而损伤能量则随之呈现减小-增大-减小的变化趋势,因而存在一个极小值和一个极大值.仿真与实验结果的比较表明,本文建立的晶体管模型不但能预测强电磁脉冲作用下BJT内部烧毁发生的位置,而且能够得到损伤能量.
建立瞭雙極晶體管(BJT)在彊電磁脈遲作用下的二維電熱模型,對處于有源放大區的BJT在基極註入彊電磁脈遲時的瞬態響應進行瞭倣真.結果錶明, BJT燒燬點位置隨註入脈遲幅度變化而變化,低脈遲幅度下晶體管燒燬是由髮射結反嚮雪崩擊穿所緻,燒燬點位于髮射結柱麵區;而在高脈遲幅度下,由基區-外延層-襯底組成的p-n-n+二極管髮生二次擊穿導緻靠近髮射極一側的基極邊緣率先燒燬;BJT的燒燬時間隨脈遲幅度升高而減小,而損傷能量則隨之呈現減小-增大-減小的變化趨勢,因而存在一箇極小值和一箇極大值.倣真與實驗結果的比較錶明,本文建立的晶體管模型不但能預測彊電磁脈遲作用下BJT內部燒燬髮生的位置,而且能夠得到損傷能量.
건립료쌍겁정체관(BJT)재강전자맥충작용하적이유전열모형,대처우유원방대구적BJT재기겁주입강전자맥충시적순태향응진행료방진.결과표명, BJT소훼점위치수주입맥충폭도변화이변화,저맥충폭도하정체관소훼시유발사결반향설붕격천소치,소훼점위우발사결주면구;이재고맥충폭도하,유기구-외연층-츤저조성적p-n-n+이겁관발생이차격천도치고근발사겁일측적기겁변연솔선소훼;BJT적소훼시간수맥충폭도승고이감소,이손상능량칙수지정현감소-증대-감소적변화추세,인이존재일개겁소치화일개겁대치.방진여실험결과적비교표명,본문건립적정체관모형불단능예측강전자맥충작용하BJT내부소훼발생적위치,이차능구득도손상능량.
@@@@A two-dimensional electrothermal model of the bipolar transistor (BJT) is established, and the transient behaviors of the BJT originally in the forward-active region are simulated with the injection of electromagnetic pulse from the base. The results show that the damage location of the BJT shifts with the amplitude of the pulse. With a low pulse amplitude, the burnout of the BJT is caused by the avalanche breakdown of the emitter-base junction, and the damage location lies in the cylindrical region of this junction. With a high pulse amplitude, the damage first occurs at the edge of the base closer to the emitter due to the second breakdown of the p-n-n+structure composed of the base, the epitaxial layer and the substrate. The burnout time increases with pulse amplitude increasing, while the damage energy changes in a decrease-increase-decrease order with it, thus generating both a minimum value and a maximum value of the damage energy. A comparison between simulation results and experimental ones shows that the transistor model presented in the paper can not only predict the damage location in the BJT under intense electromagnetic pulses, but also obtain the damage energy.