中国农机化学报
中國農機化學報
중국농궤화학보
Journal of Chinese Agricultural Mechanization
2013年
2期
122-127
,共6页
彭占武%司秀丽%王雪%袁洪印
彭佔武%司秀麗%王雪%袁洪印
팽점무%사수려%왕설%원홍인
图像处理%模糊聚类%黄瓜霜霉病
圖像處理%模糊聚類%黃瓜霜黴病
도상처리%모호취류%황과상매병
image processing%fuzzy cluster%cucumber downy mildew
为及时、准确的识别农作物病害,科学合理使用农药,提升农产品品质和产量,本文综合运用图像处理和模糊识别技术,以黄瓜病害为研究对象,进行了黄瓜霜霉病自动识别的试验研究.在自然光条件下拍摄黄瓜叶片图像作为实验数据,为减少干扰因素对病害特征的不利影响,对原始图像做预处理,并把病斑分离出来;在农业植保专家的指导下,分析了黄瓜霜霉病病害的典型特征,从病斑形状、纹理和颜色三方面提取了16个特征参数;对黄瓜霜霉病叶片图像进行有监督的样本训练,得到黄瓜霜霉病害的标准特征模式,再对待测样本进行模糊聚类测试,平均识别准确率为95.28%.试验结果表明,该方法对于黄瓜霜霉病的识别效果较好.
為及時、準確的識彆農作物病害,科學閤理使用農藥,提升農產品品質和產量,本文綜閤運用圖像處理和模糊識彆技術,以黃瓜病害為研究對象,進行瞭黃瓜霜黴病自動識彆的試驗研究.在自然光條件下拍攝黃瓜葉片圖像作為實驗數據,為減少榦擾因素對病害特徵的不利影響,對原始圖像做預處理,併把病斑分離齣來;在農業植保專傢的指導下,分析瞭黃瓜霜黴病病害的典型特徵,從病斑形狀、紋理和顏色三方麵提取瞭16箇特徵參數;對黃瓜霜黴病葉片圖像進行有鑑督的樣本訓練,得到黃瓜霜黴病害的標準特徵模式,再對待測樣本進行模糊聚類測試,平均識彆準確率為95.28%.試驗結果錶明,該方法對于黃瓜霜黴病的識彆效果較好.
위급시、준학적식별농작물병해,과학합리사용농약,제승농산품품질화산량,본문종합운용도상처리화모호식별기술,이황과병해위연구대상,진행료황과상매병자동식별적시험연구.재자연광조건하박섭황과협편도상작위실험수거,위감소간우인소대병해특정적불리영향,대원시도상주예처리,병파병반분리출래;재농업식보전가적지도하,분석료황과상매병병해적전형특정,종병반형상、문리화안색삼방면제취료16개특정삼수;대황과상매병협편도상진행유감독적양본훈련,득도황과상매병해적표준특정모식,재대대측양본진행모호취류측시,평균식별준학솔위95.28%.시험결과표명,해방법대우황과상매병적식별효과교호.
@@@@Made scientific use of pesticides to enhance the quality of agricultural products, timely identify crop diseases, this paper taken cucumber diseases as the object, used two methods, image processing and fuzzy recognition, to study on the automatic identification of cu-cumber Downy mildew. Leaves images were taken under natural light as the experimental data. The original images were pre-processed and the lesions were extracted. Under the guidance of experts, the typical characteristics of the disease were analyzed, and 16 feature parameters were extracted from lesion shape, texture and color. For supervising training samples, a standard feature was got, and then test sample was treated for fuzzy clustering, the average accuracy rate of recognition was 95.28%. The results showed that the method was better.