中国水产科学
中國水產科學
중국수산과학
Journal of Fishery Sciences of China
2013年
2期
327-337
,共11页
吴忠鑫%张秀梅%张磊%佟飞%刘洪军
吳忠鑫%張秀梅%張磊%佟飛%劉洪軍
오충흠%장수매%장뢰%동비%류홍군
人工鱼礁%生态容纳量%刺参%皱纹盘鲍%俚岛
人工魚礁%生態容納量%刺參%皺紋盤鮑%俚島
인공어초%생태용납량%자삼%추문반포%리도
artificial reef%ecological carrying capacity%Apostichopus japonicus%Haliotis discus hannai%Lidao
俚岛人工鱼礁区是中国北方近海典型的海珍品增殖型人工鱼礁生态系统,刺参(Apostichopus japonicus)和皱纹盘鲍(Haliotis discus hannai)是该生态系的主要增殖放流种类.基于2009年在荣成俚岛人工鱼礁区进行的周年生物资源调查数据,利用 EWE 软件构建俚岛人工鱼礁区生态系统生态通道模型(Ecopath),对该模型进行了不确定性及输入参数敏感度检验,系统分析了俚岛人工鱼礁区生态系统特征和能量流动规律,估算了俚岛人工鱼礁区生态系统内刺参和皱纹盘鲍的生态容纳量.模型由19个功能组构成,基本涵盖了俚岛人工鱼礁区生态系统能量流动的主要过程.分析结果表明,模型可信度 P 指数为0.51,小型底层鱼类生产量与生物量的比值(P/B)下降50%会使小型底层鱼类生物量(B)估算值变化1.36,影响最大;系统总流量为10786.680 t/(km2·a),其中27%流向碎屑,17%以捕捞和沉积的形式流出系统;系统的总初级生产力为4131.966 t/(km2·a);系统的总能量转换效率为10.5%,流量中来自碎屑的比例为39%,其中的61%直接来源于初级生产者,能流通道以牧食食物链为主导;刺参和皱纹盘鲍的生态容纳量为309.4 t/km2和198.86 t/km2,目前礁区刺参和皱纹盘鲍的生物量分别占估算生态容纳量的31.72%和26.15%,仍具一定的增殖空间.
俚島人工魚礁區是中國北方近海典型的海珍品增殖型人工魚礁生態繫統,刺參(Apostichopus japonicus)和皺紋盤鮑(Haliotis discus hannai)是該生態繫的主要增殖放流種類.基于2009年在榮成俚島人工魚礁區進行的週年生物資源調查數據,利用 EWE 軟件構建俚島人工魚礁區生態繫統生態通道模型(Ecopath),對該模型進行瞭不確定性及輸入參數敏感度檢驗,繫統分析瞭俚島人工魚礁區生態繫統特徵和能量流動規律,估算瞭俚島人工魚礁區生態繫統內刺參和皺紋盤鮑的生態容納量.模型由19箇功能組構成,基本涵蓋瞭俚島人工魚礁區生態繫統能量流動的主要過程.分析結果錶明,模型可信度 P 指數為0.51,小型底層魚類生產量與生物量的比值(P/B)下降50%會使小型底層魚類生物量(B)估算值變化1.36,影響最大;繫統總流量為10786.680 t/(km2·a),其中27%流嚮碎屑,17%以捕撈和沉積的形式流齣繫統;繫統的總初級生產力為4131.966 t/(km2·a);繫統的總能量轉換效率為10.5%,流量中來自碎屑的比例為39%,其中的61%直接來源于初級生產者,能流通道以牧食食物鏈為主導;刺參和皺紋盤鮑的生態容納量為309.4 t/km2和198.86 t/km2,目前礁區刺參和皺紋盤鮑的生物量分彆佔估算生態容納量的31.72%和26.15%,仍具一定的增殖空間.
리도인공어초구시중국북방근해전형적해진품증식형인공어초생태계통,자삼(Apostichopus japonicus)화추문반포(Haliotis discus hannai)시해생태계적주요증식방류충류.기우2009년재영성리도인공어초구진행적주년생물자원조사수거,이용 EWE 연건구건리도인공어초구생태계통생태통도모형(Ecopath),대해모형진행료불학정성급수입삼수민감도검험,계통분석료리도인공어초구생태계통특정화능량류동규률,고산료리도인공어초구생태계통내자삼화추문반포적생태용납량.모형유19개공능조구성,기본함개료리도인공어초구생태계통능량류동적주요과정.분석결과표명,모형가신도 P 지수위0.51,소형저층어류생산량여생물량적비치(P/B)하강50%회사소형저층어류생물량(B)고산치변화1.36,영향최대;계통총류량위10786.680 t/(km2·a),기중27%류향쇄설,17%이포로화침적적형식류출계통;계통적총초급생산력위4131.966 t/(km2·a);계통적총능량전환효솔위10.5%,류량중래자쇄설적비례위39%,기중적61%직접래원우초급생산자,능류통도이목식식물련위주도;자삼화추문반포적생태용납량위309.4 t/km2화198.86 t/km2,목전초구자삼화추문반포적생물량분별점고산생태용납량적31.72%화26.15%,잉구일정적증식공간.
@@@@The Lidao reef zone is a typical artificial reef ecosystem for rare marine animal stock enhancement in the coastal sea of North China. The sea cucumber, Apostichopus japonicus (Selenck), and the abalone, Haliotis discus hannai, are the main enhancement species in the system. Based on the data of biological resources obtained from an investigation of the Lidao artificial reef zone in 2009, a balanced trophic model of the area was con-structed using the Ecopath with Ecosim software package. The effects of uncertainty of input parameters and Ecopath analysis sensitivity were explored. Trophic flow and system attributes of the Lidao artificial reef system were analyzed. The ecological carrying capacity for A. japonicus and H. discus hannai were also predicted. The model consisted of 19 functional groups, which covered the main trophic flow in the Lidao artificial reef ecosys-tem. The results showed that the pedigree index of the model was 0.51, and the input parameters having the great-est effects on the output parameters were the production/biomass ratios (P/B) of small demersal fish groups. A–50% change in the production/biomass ratios in small demersal fish groups gave a sensitivity of the biomass (B) of the same group from 100% to 136%. The total system throughput was estimated to be 10 786.680 t/(km2·a), 27% of which flowed to detritus and 17% of which is tranferred out of the ecosystem in the forms of fishing and sediment. Total net primary production was 4131.966 t/(km2·a) and the total energy transfer efficiency was 10.5%. The proportion of the total flow originating from detritus was 39%, and that from primary producers was 61%, indicating that the energy flow was dominated by grazing food chain. The ecological carrying capacity was de-fined as the level of enhancement that could be introduced without significantly changing the major trophic fluxes or structure of the food web. The ecological carrying capacities for A. japonicus and H. discus hannai were 309.40 t/km2 and 198.86 t/km2. This accounts for 31.72% and 26.15% of the biomass of each, respectively, meaning there is further potential for stock enhancement.