电气传动自动化
電氣傳動自動化
전기전동자동화
ELECTRICAL DRIVE AUTOMATION
2013年
2期
41-44
,共4页
分形%BP神经网络%故障诊断
分形%BP神經網絡%故障診斷
분형%BP신경망락%고장진단
fractal%back propagation neural network%fault diagnosis
针对电力电子电路的故障,分析了故障产生的特征类型,提出了基于分形理论及BP网络故障诊断的方法.以三相整流桥路为例,利用分形理论建立了故障元与分形维数之间的关系,对故障信息做预处理.通过仿真试验提取出用于BP神经网络训练的学习样本,并构建了用于不同类故障的三层BP神经网络结构,继而确定故障点.
針對電力電子電路的故障,分析瞭故障產生的特徵類型,提齣瞭基于分形理論及BP網絡故障診斷的方法.以三相整流橋路為例,利用分形理論建立瞭故障元與分形維數之間的關繫,對故障信息做預處理.通過倣真試驗提取齣用于BP神經網絡訓練的學習樣本,併構建瞭用于不同類故障的三層BP神經網絡結構,繼而確定故障點.
침대전력전자전로적고장,분석료고장산생적특정류형,제출료기우분형이론급BP망락고장진단적방법.이삼상정류교로위례,이용분형이론건립료고장원여분형유수지간적관계,대고장신식주예처리.통과방진시험제취출용우BP신경망락훈련적학습양본,병구건료용우불동류고장적삼층BP신경망락결구,계이학정고장점.
The feature types of fault occurred in power electronic circuit are analyzed. The methods of fractal theory and back propagation (BP) neural network are proposed. In three-phase rectifier bridge circuit, the relationship between the fault element and the fractal dimension of fault information are set up to do preprocessing. The learning samples for training BP neural network is obtained by simulating the different fault types of thyristors in the rectifier, and the three-layer BP neural networks for different fault types are constructed. Then the point of fault is also determined.