电讯技术
電訊技術
전신기술
TELECOMMUNICATIONS ENGINEERING
2013年
4期
395-401
,共7页
朱华进**%张洋%鄂嵋%禹华钢
硃華進**%張洋%鄂嵋%禹華鋼
주화진**%장양%악미%우화강
目标源定位%约束加权最小二乘%到达时差%到达频差%拉格朗日乘子技术
目標源定位%約束加權最小二乘%到達時差%到達頻差%拉格朗日乘子技術
목표원정위%약속가권최소이승%도체시차%도체빈차%랍격랑일승자기술
source localization%constrained weighted least-squares(CWLS)%time difference of arrival(TDOA)%frequency difference of arrival(FDOA)%Lagrange multipliers
针对运动目标源定位问题,提出了一种基于约束加权最小二乘(Constrained Weighted Least-Squares,CWLS)的时差频差定位算法.该算法利用目标源到达多个接收站的时差和频差信息,对目标源的位置和速度进行估计.通过引入中间变量,将时差频差非线性方程转换成伪线性方程(中间变量与目标源位置和速度之间存在约束关系),再对此约束条件引入拉格朗日乘子技术,将此伪线性方程的求解转化为求条件极值问题,创造性地求解了此非线性定位方程,提高了定位精度,并能满足实时性和全局收敛要求.仿真实验表明,该算法在保持相近复杂度的同时,进一步提高了定位性能,优于两步加权最小二乘算法,在噪声较高时仍然能达到克拉美罗下限
針對運動目標源定位問題,提齣瞭一種基于約束加權最小二乘(Constrained Weighted Least-Squares,CWLS)的時差頻差定位算法.該算法利用目標源到達多箇接收站的時差和頻差信息,對目標源的位置和速度進行估計.通過引入中間變量,將時差頻差非線性方程轉換成偽線性方程(中間變量與目標源位置和速度之間存在約束關繫),再對此約束條件引入拉格朗日乘子技術,將此偽線性方程的求解轉化為求條件極值問題,創造性地求解瞭此非線性定位方程,提高瞭定位精度,併能滿足實時性和全跼收斂要求.倣真實驗錶明,該算法在保持相近複雜度的同時,進一步提高瞭定位性能,優于兩步加權最小二乘算法,在譟聲較高時仍然能達到剋拉美囉下限
침대운동목표원정위문제,제출료일충기우약속가권최소이승(Constrained Weighted Least-Squares,CWLS)적시차빈차정위산법.해산법이용목표원도체다개접수참적시차화빈차신식,대목표원적위치화속도진행고계.통과인입중간변량,장시차빈차비선성방정전환성위선성방정(중간변량여목표원위치화속도지간존재약속관계),재대차약속조건인입랍격랑일승자기술,장차위선성방정적구해전화위구조건겁치문제,창조성지구해료차비선성정위방정,제고료정위정도,병능만족실시성화전국수렴요구.방진실험표명,해산법재보지상근복잡도적동시,진일보제고료정위성능,우우량보가권최소이승산법,재조성교고시잉연능체도극랍미라하한
By utilizing the time difference of arrival (TDOA)and frequency difference of arrival (FDOA)mea-surements of a signal received at a number of receivers,a constrained weighted least-squares (CWLS)algorithms for estimating the position and velocity of a moving source is proposed. By utilizing the Lagrange multipliers technique,the known relation between the intermediate variables and the source location coordinates can be ex-ploited to constrain the solution. And,on basis of convolute and polynomial rooting operations,the Lagrange multipliers can be obtained efficiently and robustly,which can allow real-time implementation as well as ensure global convergence. Simulation results show that the proposed estimator achieves remarkably better performance than the two-step weighted least squares(WLS)approach especially for higher measurement noise level,which makes the Cramér-Rao lower bound(CRLB)at a sufficiently high noise level before the threshold effect occurs possible.