光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2013年
4期
101-105
,共5页
生物特征%融合%身份识别%k近邻%支持向量机
生物特徵%融閤%身份識彆%k近鄰%支持嚮量機
생물특정%융합%신빈식별%k근린%지지향량궤
biometric%fusion%personal identity identification%kNN%SVM
针对识别模式下多生物特征融合识别系统的实现问题,本文基于手背静脉、虹膜和指纹三种生物特征研究了高效的融合识别算法.分别对三种生物特征进行特征提取与匹配,得到独立的匹配分数,基于k近邻(k Nearest Neighbor, kNN)分类器实现手背静脉特征识别,将用户身份范围缩小到k个,实现个人身份的初步识别,利用支持向量机(Support Vector Machine, SVM)算法实现k个样本范围内虹膜和指纹的融合识别,实现最终的个人身份识别.利用构建的三模态生物特征图像数据库进行了实验分析,实验结果表明该系统具有较高的识别性能,具有广阔的应用前景.
針對識彆模式下多生物特徵融閤識彆繫統的實現問題,本文基于手揹靜脈、虹膜和指紋三種生物特徵研究瞭高效的融閤識彆算法.分彆對三種生物特徵進行特徵提取與匹配,得到獨立的匹配分數,基于k近鄰(k Nearest Neighbor, kNN)分類器實現手揹靜脈特徵識彆,將用戶身份範圍縮小到k箇,實現箇人身份的初步識彆,利用支持嚮量機(Support Vector Machine, SVM)算法實現k箇樣本範圍內虹膜和指紋的融閤識彆,實現最終的箇人身份識彆.利用構建的三模態生物特徵圖像數據庫進行瞭實驗分析,實驗結果錶明該繫統具有較高的識彆性能,具有廣闊的應用前景.
침대식별모식하다생물특정융합식별계통적실현문제,본문기우수배정맥、홍막화지문삼충생물특정연구료고효적융합식별산법.분별대삼충생물특정진행특정제취여필배,득도독립적필배분수,기우k근린(k Nearest Neighbor, kNN)분류기실현수배정맥특정식별,장용호신빈범위축소도k개,실현개인신빈적초보식별,이용지지향량궤(Support Vector Machine, SVM)산법실현k개양본범위내홍막화지문적융합식별,실현최종적개인신빈식별.이용구건적삼모태생물특정도상수거고진행료실험분석,실험결과표명해계통구유교고적식별성능,구유엄활적응용전경.
@@@@Aiming at the implementation of multi-modal biometric system in identification modal, the efficient identification algorithm based on hand vein, iris and fingerprint was developed. Firstly, feature extraction and feature matching of three unimodal biometric traits was carried out respectively and the independent matching scores of each trait was obtained. Then, k Nearest Neighbor (kNN) classifier was utilized to preliminary identification based on hand vein, and the number of user’s identity would be reduced to k. Finally, Support Vector Machine (SVM) classifier was developed to accuracy identification of user’s identity based on iris and fingerprint. The constructing three-modal biometric image database was used to experimental analysis. The results show that the system has good identification performance, which possesses wide application prospect.