电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2013年
8期
123-128
,共6页
并网逆变器%双环控制%电流控制器%准比例谐振控制%LCL滤波器
併網逆變器%雙環控製%電流控製器%準比例諧振控製%LCL濾波器
병망역변기%쌍배공제%전류공제기%준비례해진공제%LCL려파기
grid-connected inverter%two-loop control%current controller%Quasi-PR%LCL filter
在LCL型并网逆变器的应用中,电流控制器的结构和参数对系统稳定性和输出电流质量非常重要.采用电容电流内环,进网电流外环的双闭环控制策略,提出了一种基于准比例谐振调节器和比例调节器的新型电流控制器设计方法.与传统单位电容电流反馈不同,将比例调节器用于反馈通道,实现两个调节器间的解耦控制,简化调节过程.根据逆变系统实际特性,在正向通道中引入惯性环节.控制器参数由系统闭环传递函数根轨迹方法进行设计,以凸显单个参数对系统的影响,使设计过程在无任何假设和简化的情况下直观明了.额定功率为50kW并网逆变器的仿真结果验证了所提控制策略和电流控制器设计方法的合理性和可行性.
在LCL型併網逆變器的應用中,電流控製器的結構和參數對繫統穩定性和輸齣電流質量非常重要.採用電容電流內環,進網電流外環的雙閉環控製策略,提齣瞭一種基于準比例諧振調節器和比例調節器的新型電流控製器設計方法.與傳統單位電容電流反饋不同,將比例調節器用于反饋通道,實現兩箇調節器間的解耦控製,簡化調節過程.根據逆變繫統實際特性,在正嚮通道中引入慣性環節.控製器參數由繫統閉環傳遞函數根軌跡方法進行設計,以凸顯單箇參數對繫統的影響,使設計過程在無任何假設和簡化的情況下直觀明瞭.額定功率為50kW併網逆變器的倣真結果驗證瞭所提控製策略和電流控製器設計方法的閤理性和可行性.
재LCL형병망역변기적응용중,전류공제기적결구화삼수대계통은정성화수출전류질량비상중요.채용전용전류내배,진망전류외배적쌍폐배공제책략,제출료일충기우준비례해진조절기화비례조절기적신형전류공제기설계방법.여전통단위전용전류반궤불동,장비례조절기용우반궤통도,실현량개조절기간적해우공제,간화조절과정.근거역변계통실제특성,재정향통도중인입관성배절.공제기삼수유계통폐배전체함수근궤적방법진행설계,이철현단개삼수대계통적영향,사설계과정재무임하가설화간화적정황하직관명료.액정공솔위50kW병망역변기적방진결과험증료소제공제책략화전류공제기설계방법적합이성화가행성.
In the application of LCL filter based inverters, the structure and parameters of current-controller are very important for the system stability and output current quality. This paper uses a filter-capacitor current and grid current feedback control scheme for grid-connected inverter, and proposes a novel design method of current controller based on a Quasi-PR regulator and a proportional regulator. Unlike the existing control strategy with unit capacitor current feedback, this method applies the proportional regulator to the feedback path, which can decouple these two regulators, and simplify the tuning process. Controller parameters are tuned with the aid of root-locus of system close-loop transfer function, which can provide better grasp of the influence of individual parameters and make the design process visible without any simplification and assumption. The reasonability and feasibility of the control strategy and the proposed current controller design method are verified by the simulation results of a 50 kW grid-connected inverter.