物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
4期
829-836
,共8页
吸附%氧化石墨烯%双酚A%内分泌干扰物%水处理
吸附%氧化石墨烯%雙酚A%內分泌榦擾物%水處理
흡부%양화석묵희%쌍분A%내분비간우물%수처리
Adsorption%Graphene oxide%Bisphenol A%Endocrine-disrupting chemical%Water treatment
以氧化石墨烯(GO)为吸附剂,内分泌干扰物双酚A (BPA)为目标污染物,考察了GO对水中BPA的吸附性能.结果表明:GO对BPA的最大吸附量(qm)约为87.80 mg·g-1(25°C),30 min左右即可达到吸附平衡,远快于活性碳;吸附动力学和等温线数据分别符合准二级动力学模型和Langmuir吸附模型;在溶液接近中性和低温的条件下有利于吸附的进行,在溶液中存在电解质的条件下不利于吸附的进行. GO具有优异的循环吸附性能,经过多次循环使用后依然可以保持良好的吸附能力. GO对BPA的吸附机理主要是由于GO本身的片状结构以及表面的含氧极性基团,会与BPA之间产生π-π色散作用和氢键作用.虽然GO对BPA的吸附能力不如石墨烯,但是相比于石墨烯, GO表面含有大量极性基团,具有良好的亲水性,且GO合成方法相对简单,可批量生产用于工业污水处理.因此,在水处理领域, GO有能力成为新型高效的吸附剂.
以氧化石墨烯(GO)為吸附劑,內分泌榦擾物雙酚A (BPA)為目標汙染物,攷察瞭GO對水中BPA的吸附性能.結果錶明:GO對BPA的最大吸附量(qm)約為87.80 mg·g-1(25°C),30 min左右即可達到吸附平衡,遠快于活性碳;吸附動力學和等溫線數據分彆符閤準二級動力學模型和Langmuir吸附模型;在溶液接近中性和低溫的條件下有利于吸附的進行,在溶液中存在電解質的條件下不利于吸附的進行. GO具有優異的循環吸附性能,經過多次循環使用後依然可以保持良好的吸附能力. GO對BPA的吸附機理主要是由于GO本身的片狀結構以及錶麵的含氧極性基糰,會與BPA之間產生π-π色散作用和氫鍵作用.雖然GO對BPA的吸附能力不如石墨烯,但是相比于石墨烯, GO錶麵含有大量極性基糰,具有良好的親水性,且GO閤成方法相對簡單,可批量生產用于工業汙水處理.因此,在水處理領域, GO有能力成為新型高效的吸附劑.
이양화석묵희(GO)위흡부제,내분비간우물쌍분A (BPA)위목표오염물,고찰료GO대수중BPA적흡부성능.결과표명:GO대BPA적최대흡부량(qm)약위87.80 mg·g-1(25°C),30 min좌우즉가체도흡부평형,원쾌우활성탄;흡부동역학화등온선수거분별부합준이급동역학모형화Langmuir흡부모형;재용액접근중성화저온적조건하유리우흡부적진행,재용액중존재전해질적조건하불리우흡부적진행. GO구유우이적순배흡부성능,경과다차순배사용후의연가이보지량호적흡부능력. GO대BPA적흡부궤리주요시유우GO본신적편상결구이급표면적함양겁성기단,회여BPA지간산생π-π색산작용화경건작용.수연GO대BPA적흡부능력불여석묵희,단시상비우석묵희, GO표면함유대량겁성기단,구유량호적친수성,차GO합성방법상대간단,가비량생산용우공업오수처리.인차,재수처리영역, GO유능력성위신형고효적흡부제.
@@@@The elimination of bisphenol A (BPA) from aqueous solution by adsorption on graphene oxide (GO) was investigated. The maximum adsorption capacity (qm) of GO for BPA estimated from the Langmuir isotherm was 87.80 mg·g-1 at 25 °C. The required contact time to reach adsorption equilibrium was about 30 min, which was much shorter than that of activated carbon. The adsorption kinetics and isotherm data fitted wel with the pseudo-second-order kinetic model and the Langmuir isotherm, respectively. Neutral pH and low solution temperature were favorable for adsorption, whereas the presence of NaCl in the solution was unfavorable. The GO had good recyclability and could be reused several times with a slight decline in adsorption ability. Both hydrogen bonding and π-π interaction were thought to be responsible for the adsorption of BPA on GO. The excel ent adsorption capacity and high adsorption rate of GO result from its sheet-like structure and the abundant oxygen-containing groups on its surface. Although qm of GO for BPA is lower than that of graphene, GO has the benefits of large scale production, a hydrophilic surface with plenty of oxygen-containing groups, and good dispersion in water. Therefore, GO can be regarded as a good potential adsorbent for water treatment.