物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
4期
837-842
,共6页
李金兵%姜志全*%黄伟新
李金兵%薑誌全*%黃偉新
리금병%강지전*%황위신
Ag/Pt(110)双金属表面%二氧化氮%化学吸附%分解%助剂作用
Ag/Pt(110)雙金屬錶麵%二氧化氮%化學吸附%分解%助劑作用
Ag/Pt(110)쌍금속표면%이양화담%화학흡부%분해%조제작용
Ag/Pt(110) bimetal ic surface%NO2%Chemisorption%Decomposition%Promotion effect
利用俄歇电子能谱(AES)和程序升温脱附谱(TDS)研究了NO2在Ag/Pt(110)双金属表面的吸附和分解.室温下NO2在Ag/Pt(110)双金属表面发生解离吸附,生成NO(ads)和O(ads)表面吸附物种.在升温过程中NO(ads)物种发生脱附或者进一步分解.500 K时NO2在Ag/Pt(110)双金属表面发生解离吸附生成O(ads)表面吸附物种. Pt向Ag传递电子,从而削弱Pt-O键的强度,降低O(ads)从Pt表面的并合脱附温度.发现能够形成具有稳定组成的Ag/Pt(110)合金结构,其表现出与Pt(110)-(1×2)相似的解离吸附NO2能力,但与O(ads)的结合明显弱于Pt(110)-(1×2).该AgPt(110)合金结构是可能的低温催化直接分解氮氧化物活性结构.
利用俄歇電子能譜(AES)和程序升溫脫附譜(TDS)研究瞭NO2在Ag/Pt(110)雙金屬錶麵的吸附和分解.室溫下NO2在Ag/Pt(110)雙金屬錶麵髮生解離吸附,生成NO(ads)和O(ads)錶麵吸附物種.在升溫過程中NO(ads)物種髮生脫附或者進一步分解.500 K時NO2在Ag/Pt(110)雙金屬錶麵髮生解離吸附生成O(ads)錶麵吸附物種. Pt嚮Ag傳遞電子,從而削弱Pt-O鍵的彊度,降低O(ads)從Pt錶麵的併閤脫附溫度.髮現能夠形成具有穩定組成的Ag/Pt(110)閤金結構,其錶現齣與Pt(110)-(1×2)相似的解離吸附NO2能力,但與O(ads)的結閤明顯弱于Pt(110)-(1×2).該AgPt(110)閤金結構是可能的低溫催化直接分解氮氧化物活性結構.
이용아헐전자능보(AES)화정서승온탈부보(TDS)연구료NO2재Ag/Pt(110)쌍금속표면적흡부화분해.실온하NO2재Ag/Pt(110)쌍금속표면발생해리흡부,생성NO(ads)화O(ads)표면흡부물충.재승온과정중NO(ads)물충발생탈부혹자진일보분해.500 K시NO2재Ag/Pt(110)쌍금속표면발생해리흡부생성O(ads)표면흡부물충. Pt향Ag전체전자,종이삭약Pt-O건적강도,강저O(ads)종Pt표면적병합탈부온도.발현능구형성구유은정조성적Ag/Pt(110)합금결구,기표현출여Pt(110)-(1×2)상사적해리흡부NO2능력,단여O(ads)적결합명현약우Pt(110)-(1×2).해AgPt(110)합금결구시가능적저온최화직접분해담양화물활성결구.
@@@@The adsorption and decomposition of NO2 on Ag/Pt(110) bimetal ic surfaces have been investigated by Auger electron spectroscopy (AES) and thermal desorption spectroscopy (TDS). At room temperature, NO2 undergoes dissociative chemisorption on Ag/Pt(110) bimetal ic surfaces, forming chemisorbed NO(ads) and O(ads). Upon heating, NO(ads) undergoes both desorption from the surface and further decomposition. At 500 K, NO2 chemisorbs dissociatively on Ag/Pt(110) bimetal ic surfaces, forming O(ads). Electron transfer occurs from Pt to Ag, therefore, the presence of Ag on Pt(110) surface weakens the binding energy of O(ads) with the surface and decreases the temperature required for the recombinative desorption of O(ads) from the surface. We observed the formation of a Ag/Pt(110) al oy structure that exhibits catalytic activity towards NO2 decomposition similar to that of Pt(110)-(1×2) but with a binding energy towards O(ads) much lower than that of Pt(110)-(1×2). Such a Ag/Pt(110) al oy structure may be active in catalyzing the direct decomposition of NOx at relatively low temperatures.