物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
4期
881-888
,共8页
蔡宏敏%任素贞*%王萌%贾翠英
蔡宏敏%任素貞*%王萌%賈翠英
채굉민%임소정*%왕맹%가취영
SnO2%中空微纳米球%核-壳结构%模板法%水解反应
SnO2%中空微納米毬%覈-殼結構%模闆法%水解反應
SnO2%중공미납미구%핵-각결구%모판법%수해반응
SnO2%Hol ow micro/nano sphere%Core-shel structure%Template method%Hydrolysis
模板法是制备无机中空微纳米球的重要方法之一.本文以苯乙烯为单体,通过乳液聚合得到粒径约为620 nm的单分散聚苯乙烯(PS)微球.以磺化后的聚苯乙烯(PSS)微球为模板,利用阴阳离子静电吸附作用,将PSS与前驱体SnSO4中的Sn2+结合.通过Sn2+在乙醇-水介质中的水解作用得到核-壳复合结构,再经高温煅烧,得到SnO2中空微纳米球.实验对前驱体的浓度、表面活性剂的用量、反应时间及模板选择等方面做了研究,通过扫描电镜(SEM)、X射线衍射(XRD)、红外(IR)光谱、热重分析(TGA)、H2程序升温还原(H2-TPR)、Brunauer-Emmett-Tel er (BET)比表面积等技术深入探究SnO2中空微纳米球的结构,并对比中空SnO2与实心粒子的氧化还原特性. BET和H2-TPR显示将SnO2制备成微纳米空心球后其比表面积增大,表面氧空位明显增多,氧化活性明显提高.从IR及XRD推断核-壳结构形成机理,进而优化出简单合理的实验方案,获得表面光滑、结构致密,包覆厚度可控的SnO2中空微纳米球.
模闆法是製備無機中空微納米毬的重要方法之一.本文以苯乙烯為單體,通過乳液聚閤得到粒徑約為620 nm的單分散聚苯乙烯(PS)微毬.以磺化後的聚苯乙烯(PSS)微毬為模闆,利用陰暘離子靜電吸附作用,將PSS與前驅體SnSO4中的Sn2+結閤.通過Sn2+在乙醇-水介質中的水解作用得到覈-殼複閤結構,再經高溫煅燒,得到SnO2中空微納米毬.實驗對前驅體的濃度、錶麵活性劑的用量、反應時間及模闆選擇等方麵做瞭研究,通過掃描電鏡(SEM)、X射線衍射(XRD)、紅外(IR)光譜、熱重分析(TGA)、H2程序升溫還原(H2-TPR)、Brunauer-Emmett-Tel er (BET)比錶麵積等技術深入探究SnO2中空微納米毬的結構,併對比中空SnO2與實心粒子的氧化還原特性. BET和H2-TPR顯示將SnO2製備成微納米空心毬後其比錶麵積增大,錶麵氧空位明顯增多,氧化活性明顯提高.從IR及XRD推斷覈-殼結構形成機理,進而優化齣簡單閤理的實驗方案,穫得錶麵光滑、結構緻密,包覆厚度可控的SnO2中空微納米毬.
모판법시제비무궤중공미납미구적중요방법지일.본문이분을희위단체,통과유액취합득도립경약위620 nm적단분산취분을희(PS)미구.이광화후적취분을희(PSS)미구위모판,이용음양리자정전흡부작용,장PSS여전구체SnSO4중적Sn2+결합.통과Sn2+재을순-수개질중적수해작용득도핵-각복합결구,재경고온단소,득도SnO2중공미납미구.실험대전구체적농도、표면활성제적용량、반응시간급모판선택등방면주료연구,통과소묘전경(SEM)、X사선연사(XRD)、홍외(IR)광보、열중분석(TGA)、H2정서승온환원(H2-TPR)、Brunauer-Emmett-Tel er (BET)비표면적등기술심입탐구SnO2중공미납미구적결구,병대비중공SnO2여실심입자적양화환원특성. BET화H2-TPR현시장SnO2제비성미납미공심구후기비표면적증대,표면양공위명현증다,양화활성명현제고.종IR급XRD추단핵-각결구형성궤리,진이우화출간단합리적실험방안,획득표면광활、결구치밀,포복후도가공적SnO2중공미납미구.
@@@@Templating is one of the most important methods for preparation of inorganic hol ow micro/nano spheres. We prepared monodisperse polystyrene (PS) microspheres having a diameter of 620 nm by the emulsion polymerization of styrene. Sulfonated polystyrene (PSS) microspheres were used as a template, through electrostatic adsorption of anions and cations, for modification with Sn2 + from SnSO4 precursor. The core-shel composite structures thereby produced through Sn2+ hydrolysis in an ethanol-water medium were calcined at high temperature to remove PSS and to obtain SnO2 hol ow micro/nano spheres. We investigated the effects of precursor concentration, amount of surfactant, reaction time, and templates choice. Scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared (IR) spectroscopy, thermogravimetric analysis (TGA), H2 temperature programmed reduction (H2-TPR), Brunauer-Emmett-Tel er (BET) measurement, and other technical probes were used to detect the structure and properties of the prepared SnO2 hol ow micro/nano spheres, and compared them with those of solid SnO2. BET and H2-TPR showed that the hol ow SnO2 micro/nano spheres had improved specific surface area, surface oxygen vacancies, and oxidation activity. We inferred the growth mechanism of the core-shel structure from IR spectroscopy and XRD pattern and optimized the simple and reasonable synthesis procedure to obtain SnO2 hol ow micro/nano spheres which had smooth surface, compact structure, and wel control ed cladding thickness.