常熟理工学院学报
常熟理工學院學報
상숙리공학원학보
JOURNAL OF CHANGSHU INSTITUTE OF TECHNOLOGY
2013年
2期
100-103
,共4页
纹理特征%SIFT特征%茶叶分级%AdaBoost算法
紋理特徵%SIFT特徵%茶葉分級%AdaBoost算法
문리특정%SIFT특정%다협분급%AdaBoost산법
texture feature%SIFT feature%tea grading%Adaboost algorithm
当前的茶叶分级研究主要基于纹理特征构造分类器,但易受采样过程中的光照、噪声影响.本文提出了结合经典的SIFT(Scale-invariant feature transform)特征描述子在自然光条件下的茶叶分级问题,并使用多类AdaBoost算法对样本进行分类.单幅图像的提取结果显示,SIFT特征对带瑕疵的图片仍具有很好的描述能力.在采集的90幅3级茶叶样本上的实验结果显示,纹理特征+SIFT特征取得了比单组特征更好的分类性能.
噹前的茶葉分級研究主要基于紋理特徵構造分類器,但易受採樣過程中的光照、譟聲影響.本文提齣瞭結閤經典的SIFT(Scale-invariant feature transform)特徵描述子在自然光條件下的茶葉分級問題,併使用多類AdaBoost算法對樣本進行分類.單幅圖像的提取結果顯示,SIFT特徵對帶瑕疵的圖片仍具有很好的描述能力.在採集的90幅3級茶葉樣本上的實驗結果顯示,紋理特徵+SIFT特徵取得瞭比單組特徵更好的分類性能.
당전적다협분급연구주요기우문리특정구조분류기,단역수채양과정중적광조、조성영향.본문제출료결합경전적SIFT(Scale-invariant feature transform)특정묘술자재자연광조건하적다협분급문제,병사용다류AdaBoost산법대양본진행분류.단폭도상적제취결과현시,SIFT특정대대하자적도편잉구유흔호적묘술능력.재채집적90폭3급다협양본상적실험결과현시,문리특정+SIFT특정취득료비단조특정경호적분류성능.
Much research work focuses on the texture feature of the image in the tea grading, but it is prone to the illumination and the noise during the sampling. This paper proposes the combination of the texture and the SIFT features for the recognition of the tea grades under the condition of the natural light, where multi-class Ad?aBoost is used for the classification. The extracted images show that it is robust to the image noise. Moreover, the cross-fold results on 3 categories tea image dataset including 90 examples demonstrate that the texture +SIFT achieves a better performance than one group of the features alone.