电测与仪表
電測與儀錶
전측여의표
ELECTRICAL MEASUREMENT & INSTRUMENTATION
2013年
4期
22-26
,共5页
王子骏%张峰%张士文%顾昊英%曹潘亮
王子駿%張峰%張士文%顧昊英%曹潘亮
왕자준%장봉%장사문%고호영%조반량
低压串联故障电弧%支持向量机%分类辨识%电气火灾
低壓串聯故障電弧%支持嚮量機%分類辨識%電氣火災
저압천련고장전호%지지향량궤%분류변식%전기화재
low voltage series arc fault%Support Vector Machine(SVM)%classification recognition%electrical fire accidents
针对串联故障电弧发生时线路电流幅值较小传统线路保护装置不能进行有效检测的情况,提出一种基于支持向量机(SVM)的串联故障电弧识别方法.该方法利用自制的电弧发生装置模拟串联故障电弧,采集典型负载在正常回路和故障电弧回路中的电流数据,采用该数据训练基于支持向量机的串联故障电弧辨识模型.经实验证明,该辨识模型可以实现对典型线性负载和非线性负载回路中串联故障电弧的特征识别,最高识别准确率可达96%.该方法对硬件电路要求低,识别效率高,并且可以实现故障电弧波形的存储和处理,具有一定参考价值.
針對串聯故障電弧髮生時線路電流幅值較小傳統線路保護裝置不能進行有效檢測的情況,提齣一種基于支持嚮量機(SVM)的串聯故障電弧識彆方法.該方法利用自製的電弧髮生裝置模擬串聯故障電弧,採集典型負載在正常迴路和故障電弧迴路中的電流數據,採用該數據訓練基于支持嚮量機的串聯故障電弧辨識模型.經實驗證明,該辨識模型可以實現對典型線性負載和非線性負載迴路中串聯故障電弧的特徵識彆,最高識彆準確率可達96%.該方法對硬件電路要求低,識彆效率高,併且可以實現故障電弧波形的存儲和處理,具有一定參攷價值.
침대천련고장전호발생시선로전류폭치교소전통선로보호장치불능진행유효검측적정황,제출일충기우지지향량궤(SVM)적천련고장전호식별방법.해방법이용자제적전호발생장치모의천련고장전호,채집전형부재재정상회로화고장전호회로중적전류수거,채용해수거훈련기우지지향량궤적천련고장전호변식모형.경실험증명,해변식모형가이실현대전형선성부재화비선성부재회로중천련고장전호적특정식별,최고식별준학솔가체96%.해방법대경건전로요구저,식별효솔고,병차가이실현고장전호파형적존저화처리,구유일정삼고개치.
@@@@When arc fault occurs in the circuit the traditional circuit interrupters cannot detect series arc fault because of the low current value. This paper introduces a new recognition method of series arc fault which is based on Support Vector Machine (SVM) to solve this problem. First, current data of different kinds of loads are collected by a self-made arc generator, based on which, an arc fault SVM classifier is trained, the accuracy of which is then tested by experiments carried out in linear and non-linear loads circuits collectively. It turns out that the SVM approach is an effective way to distinguish the series arc fault with the highest accuracy of 96%. The SVM approach is useful to detect arc fault with a high efficiency and low requirement of hardware, meanwhile it can also save and process the current waveforms.