控制与决策
控製與決策
공제여결책
CONTROL AND DECISION
2013年
1期
115-119
,共5页
徐宇亮%陈西宏%马超%王光明
徐宇亮%陳西宏%馬超%王光明
서우량%진서굉%마초%왕광명
近似熵测度%变权组合预测%在线 LS-SVM%故障预测
近似熵測度%變權組閤預測%在線 LS-SVM%故障預測
근사적측도%변권조합예측%재선 LS-SVM%고장예측
approximate entropy%variable weight combined forecasting%online LS-SVM%fault prognostics
提出一种基于近似熵测度的变权组合预测方法.首先,不同于传统的预测效果评价准则,从衡量样本序列复杂性的角度出发,以预测值误差序列的近似熵测度为评价效果准则,建立变权组合预测优化模型;然后,在变权组合预测权值分配问题上,为克服常规的均值估计法和回归分析法的不足,采用在线最小二乘支持向量机(LS-SVM)回归法,实现预测点加权系数的准确预测;最后,通过实例表明了该方法的可行性和有效性.
提齣一種基于近似熵測度的變權組閤預測方法.首先,不同于傳統的預測效果評價準則,從衡量樣本序列複雜性的角度齣髮,以預測值誤差序列的近似熵測度為評價效果準則,建立變權組閤預測優化模型;然後,在變權組閤預測權值分配問題上,為剋服常規的均值估計法和迴歸分析法的不足,採用在線最小二乘支持嚮量機(LS-SVM)迴歸法,實現預測點加權繫數的準確預測;最後,通過實例錶明瞭該方法的可行性和有效性.
제출일충기우근사적측도적변권조합예측방법.수선,불동우전통적예측효과평개준칙,종형량양본서렬복잡성적각도출발,이예측치오차서렬적근사적측도위평개효과준칙,건립변권조합예측우화모형;연후,재변권조합예측권치분배문제상,위극복상규적균치고계법화회귀분석법적불족,채용재선최소이승지지향량궤(LS-SVM)회귀법,실현예측점가권계수적준학예측;최후,통과실례표명료해방법적가행성화유효성.
A variable weight combined forecasting method based on approximate entropy is proposed. Firstly, unlike the traditional evaluation criterion, and considering measurement complexity of sequential sample, an optimizing model of variable weight combined forecasting is established according to the approximate entropy of the prediction error sequential. Then, the weight allocation problem is considered. To avoid the insufficiency of the conventional method (e.g. mean estimation and regression analysis), online least squares support vector machine(LS-SVM) regression method is used to achieve accurate forecasting about weight. Finally, an example shows the feasibility and effectiveness of the proposed method.