物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
5期
953-958
,共6页
邓旭立%赵冬梅%丁佐龙%马桂林*
鄧旭立%趙鼕梅%丁佐龍%馬桂林*
산욱립%조동매%정좌룡%마계림*
焦磷酸锡%复合陶瓷%电解质%电导率%燃料电池
焦燐痠錫%複閤陶瓷%電解質%電導率%燃料電池
초린산석%복합도자%전해질%전도솔%연료전지
SnP2O7%Composite ceramic%Electrolyte%Conductivity%Fuel cel
首先制备了未掺杂和5%(摩尔分数)Al3+掺杂SnO2的多孔性基片,然后将基片与85%的H3PO4在600°C下反应,分别得到了致密的未掺杂和5%Al3+掺杂的SnP2O7-SnO2复合陶瓷样品.采用X射线衍射(XRD),扫描电子显微镜(SEM)和X射线能量色散谱(EDS)测试方法对样品进行了表征,采用电化学阻抗谱法(EIS)测试了样品在中温(100-250°C)下,湿润空气和湿润氢气气氛中的电导率.结果表明,在湿润空气和湿润氢气中,5%Al3+掺杂的SnP2O7-SnO2复合陶瓷样品的电导率均高于未掺杂的SnP2O7-SnO2复合陶瓷样品的电导率,且该复合陶瓷样品在湿润空气和湿润氢气中250°C下,电导率分别达到最大值:4.30×10-2和6.25×10-2 S·cm-1,高于至今报道的SnP2O7-SnO2基复合陶瓷及SnP2O7基陶瓷在类似条件下的电导率.以5%Al3+掺杂的SnP2O7-SnO2复合陶瓷样品(厚度:1.45 mm)为电解质,多孔性铂为电极组装成的氢气/空气燃料电池具有良好的中温电池性能,175、200、250°C的最大输出功率密度分别为52.0、61.9、82.3 mW·cm-2.良好的中温电池性能与该复合陶瓷电解质较高的电导率和致密度及该燃料电池较低的界面极化电阻有关.
首先製備瞭未摻雜和5%(摩爾分數)Al3+摻雜SnO2的多孔性基片,然後將基片與85%的H3PO4在600°C下反應,分彆得到瞭緻密的未摻雜和5%Al3+摻雜的SnP2O7-SnO2複閤陶瓷樣品.採用X射線衍射(XRD),掃描電子顯微鏡(SEM)和X射線能量色散譜(EDS)測試方法對樣品進行瞭錶徵,採用電化學阻抗譜法(EIS)測試瞭樣品在中溫(100-250°C)下,濕潤空氣和濕潤氫氣氣氛中的電導率.結果錶明,在濕潤空氣和濕潤氫氣中,5%Al3+摻雜的SnP2O7-SnO2複閤陶瓷樣品的電導率均高于未摻雜的SnP2O7-SnO2複閤陶瓷樣品的電導率,且該複閤陶瓷樣品在濕潤空氣和濕潤氫氣中250°C下,電導率分彆達到最大值:4.30×10-2和6.25×10-2 S·cm-1,高于至今報道的SnP2O7-SnO2基複閤陶瓷及SnP2O7基陶瓷在類似條件下的電導率.以5%Al3+摻雜的SnP2O7-SnO2複閤陶瓷樣品(厚度:1.45 mm)為電解質,多孔性鉑為電極組裝成的氫氣/空氣燃料電池具有良好的中溫電池性能,175、200、250°C的最大輸齣功率密度分彆為52.0、61.9、82.3 mW·cm-2.良好的中溫電池性能與該複閤陶瓷電解質較高的電導率和緻密度及該燃料電池較低的界麵極化電阻有關.
수선제비료미참잡화5%(마이분수)Al3+참잡SnO2적다공성기편,연후장기편여85%적H3PO4재600°C하반응,분별득도료치밀적미참잡화5%Al3+참잡적SnP2O7-SnO2복합도자양품.채용X사선연사(XRD),소묘전자현미경(SEM)화X사선능량색산보(EDS)측시방법대양품진행료표정,채용전화학조항보법(EIS)측시료양품재중온(100-250°C)하,습윤공기화습윤경기기분중적전도솔.결과표명,재습윤공기화습윤경기중,5%Al3+참잡적SnP2O7-SnO2복합도자양품적전도솔균고우미참잡적SnP2O7-SnO2복합도자양품적전도솔,차해복합도자양품재습윤공기화습윤경기중250°C하,전도솔분별체도최대치:4.30×10-2화6.25×10-2 S·cm-1,고우지금보도적SnP2O7-SnO2기복합도자급SnP2O7기도자재유사조건하적전도솔.이5%Al3+참잡적SnP2O7-SnO2복합도자양품(후도:1.45 mm)위전해질,다공성박위전겁조장성적경기/공기연료전지구유량호적중온전지성능,175、200、250°C적최대수출공솔밀도분별위52.0、61.9、82.3 mW·cm-2.량호적중온전지성능여해복합도자전해질교고적전도솔화치밀도급해연료전지교저적계면겁화전조유관.
Dense non-doped and 5%(molar fraction) Al3+-doped SnP2O7-SnO2 composite ceramics were prepared by reacting non-doped and 5%Al3+-doped SnO2 porous substrates, respectively, with 85%H3PO4 solution at 600 ° C. The composite ceramics were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Their conductivities in the intermediate temperature range of 100-250 °C in wet air and wet H2 atmospheres were measured by electrochemical impedance spectroscopy (EIS). The conductivities of the 5% Al3+-doped SnP2O7-SnO2 composite ceramic were higher than the conductivities of the non-doped SnP2O7-SnO2 composite ceramic and reached 4.30×10-2 S·cm-1 in wet air and 6.25×10-2 S·cm-1 in wet H2 at 250 °C. These values are higher than those of the SnP2O7-SnO2 based composite ceramic and SnP2O7-based ceramics under similar conditions. An H2/air fuel cel containing the 5% Al3+-doped SnP2O7-SnO2 composite ceramic as an electrolyte (thickness:1.45 mm) and porous platinum as electrodes exhibited satisfactory cel performance. The maximum output power densities of this cel were 52.0 mW·cm-2 at 175 °C, 61.9 mW·cm-2 at 200 °C and 82.3 mW·cm-2 at 250 °C. Such good performance is related to the high conductivity and sufficient density of the composite ceramic electrolyte as wel as the low interfacial polarization resistance of the cel .