物理学报
物理學報
물이학보
2013年
8期
086601-1
-086601-7
,共1页
赵宁%黄明亮%马海涛%潘学民%刘晓英
趙寧%黃明亮%馬海濤%潘學民%劉曉英
조저%황명량%마해도%반학민%류효영
Sn-Cu 钎料%黏度%表面张力%润湿性
Sn-Cu 釬料%黏度%錶麵張力%潤濕性
Sn-Cu 천료%점도%표면장력%윤습성
Sn-Cu solder%viscosity%surface tension%wettability
金属熔体的黏度和表面张力都是与液态结构相关的敏感物理性质, 且存在一定的相互关系. 对于微电子封装材料而言, 黏度和表面张力均是影响其工艺性能的重要参量. 本文利用回转振动式高温熔体黏度仪测量了 Sn-xCu (x = 0.7, 1.5, 2) 钎料熔体在不同温度下的黏度值, 发现在一定温度范围内钎料熔体的黏度值存在突变, 可划分为低温区和高温区. 在各温区内, 黏温关系很好地符合 Arrhenius 方程, 在此基础上讨论了液态钎料的结构特征和演变规律. 同时, 利用黏度值计算了液态 Sn-xCu 钎料在相应温度下的表面张力, 并通过 Sn-xCu 钎料在 Cu 基板上的润湿铺展实验对计算结果进行验证. 结果显示, 润湿角和扩展率的测试结果与表面张力的计算结果具有很好的一致性, 表明通过熔体黏度值来计算锡基二元无铅钎料合金表面张力并评估其润湿性能的方法是可行的.
金屬鎔體的黏度和錶麵張力都是與液態結構相關的敏感物理性質, 且存在一定的相互關繫. 對于微電子封裝材料而言, 黏度和錶麵張力均是影響其工藝性能的重要參量. 本文利用迴轉振動式高溫鎔體黏度儀測量瞭 Sn-xCu (x = 0.7, 1.5, 2) 釬料鎔體在不同溫度下的黏度值, 髮現在一定溫度範圍內釬料鎔體的黏度值存在突變, 可劃分為低溫區和高溫區. 在各溫區內, 黏溫關繫很好地符閤 Arrhenius 方程, 在此基礎上討論瞭液態釬料的結構特徵和縯變規律. 同時, 利用黏度值計算瞭液態 Sn-xCu 釬料在相應溫度下的錶麵張力, 併通過 Sn-xCu 釬料在 Cu 基闆上的潤濕鋪展實驗對計算結果進行驗證. 結果顯示, 潤濕角和擴展率的測試結果與錶麵張力的計算結果具有很好的一緻性, 錶明通過鎔體黏度值來計算錫基二元無鉛釬料閤金錶麵張力併評估其潤濕性能的方法是可行的.
금속용체적점도화표면장력도시여액태결구상관적민감물이성질, 차존재일정적상호관계. 대우미전자봉장재료이언, 점도화표면장력균시영향기공예성능적중요삼량. 본문이용회전진동식고온용체점도의측량료 Sn-xCu (x = 0.7, 1.5, 2) 천료용체재불동온도하적점도치, 발현재일정온도범위내천료용체적점도치존재돌변, 가화분위저온구화고온구. 재각온구내, 점온관계흔호지부합 Arrhenius 방정, 재차기출상토론료액태천료적결구특정화연변규률. 동시, 이용점도치계산료액태 Sn-xCu 천료재상응온도하적표면장력, 병통과 Sn-xCu 천료재 Cu 기판상적윤습포전실험대계산결과진행험증. 결과현시, 윤습각화확전솔적측시결과여표면장력적계산결과구유흔호적일치성, 표명통과용체점도치래계산석기이원무연천료합금표면장력병평고기윤습성능적방법시가행적.
The viscosity and surface tension of metal melt are all sensitive physical properties that relate to the liquid structure and also have a certain correlation between them. For electronic packaging materials, both viscosities and surface tensions are very important parameters affecting the processing properties. In this study, the viscosities of Sn-xCu (x = 0.7, 1.5, 2) solder melts are measured by using a torsional oscillation high-temperature viscometer. Abrupt change in viscosity occurrs in a certain range of temperature. The temperature range can accordingly be divided into a low temperature zone and a high temperature zone. The relationship between viscosity and temperature can fit to the Arrhenius equation very well in each temperature zone. The structure characteristics and evolutions of the liquid solders are then discussed. Meanwhile, the surface tensions of the Sn-xCu solders are calculated according to the viscosity values at the corresponding temperatures. The test results of the wetting angle and the spreading rate are in good agreement with the calculations, indicating that the method of using the viscosity values to calculate the surface tensions of binary lead-free solder alloys and evaluate their wettabilities is feasible.