控制与决策
控製與決策
공제여결책
CONTROL AND DECISION
2013年
5期
677-682
,共6页
动态多目标优化%遗传算法%预测%种群多样性
動態多目標優化%遺傳算法%預測%種群多樣性
동태다목표우화%유전산법%예측%충군다양성
dynamic multiobjective optimization%genetic algorithm%predict%population diversity
为了在动态环境中很好地跟踪最优解,考虑动态优化问题的特点,提出一种新的多目标预测遗传算法.首先对 Pareto 前沿面进行聚类以求得解集的质心;其次应用该质心与参考点描述 Pareto 前沿面;再次通过预测方法给出预测点集,使得算法在环境变化后能够有指导地增加种群多样性,以便快速跟踪最优解;最后应用标准动态测试问题进行算法测试,仿真分析结果表明所提出算法能适应动态环境,快速跟踪 Pareto 前沿面.
為瞭在動態環境中很好地跟蹤最優解,攷慮動態優化問題的特點,提齣一種新的多目標預測遺傳算法.首先對 Pareto 前沿麵進行聚類以求得解集的質心;其次應用該質心與參攷點描述 Pareto 前沿麵;再次通過預測方法給齣預測點集,使得算法在環境變化後能夠有指導地增加種群多樣性,以便快速跟蹤最優解;最後應用標準動態測試問題進行算法測試,倣真分析結果錶明所提齣算法能適應動態環境,快速跟蹤 Pareto 前沿麵.
위료재동태배경중흔호지근종최우해,고필동태우화문제적특점,제출일충신적다목표예측유전산법.수선대 Pareto 전연면진행취류이구득해집적질심;기차응용해질심여삼고점묘술 Pareto 전연면;재차통과예측방법급출예측점집,사득산법재배경변화후능구유지도지증가충군다양성,이편쾌속근종최우해;최후응용표준동태측시문제진행산법측시,방진분석결과표명소제출산법능괄응동태배경,쾌속근종 Pareto 전연면.
Dynamic multiobjective optimization problems require an algorithm to continuously track a changing Pareto optimal solutions over time. Therefore, a new predictive multiobjective genetic algorithm(PMGA) is proposed, in which the centroid of Pareto optimal is soluted by clustering. And Pareto optimal solutions are described by applying the centroid points and reference solutions. Then the prediction set is generated by using the inertia predict and Gauss mutation. After an environment changed, the prediction set is incorporated in the current population to increase the population diversity by guided fashion. Finally, experimental studies on dynamic multiobjective optimization problems are carried out. The simulation results show that PMGA can quickly adapt the dynamic environments and track Pareto optimal solutions.