生态环境学报
生態環境學報
생태배경학보
ECOLOGY AND ENVIRONMENT
2013年
3期
398-405
,共8页
赵海超%刘景辉*%张星杰%李立军%张磊
趙海超%劉景輝*%張星傑%李立軍%張磊
조해초%류경휘*%장성걸%리립군%장뢰
施肥%土壤%有机碳%产量%玉米
施肥%土壤%有機碳%產量%玉米
시비%토양%유궤탄%산량%옥미
fertilization%soil%soil organic carbon (SOC)%yield%spring maize
选取辽河灌区不同肥力水平春玉米(Zea mays ssp. mays L.)农田土壤为研究对象,通过连续3年田间定位试验研究施肥对不同层次土壤有机碳组分(TOC、ASOC、LFOC、DOC和MBC)的影响,分析土壤有机碳组分的产量效应.结果表明,连续种植春玉米能够显著增加低产田土壤w(TOC),增加各产田土壤w(ASOC)和w(MBC),降低各产田土壤w(LFOC),土壤w(DOC)变化较小.施肥使土壤w(TOC)增加了-13.41%~7.54%,平均增加了0.16%;使高产田表层(0~10 cm)土壤w(TOC)显著增加,低产田犁底层(20~40 cm)土壤w(TOC)显著降低.施肥使土壤w(ASOC)增加了-13.98%~72.22%,平均增加了15.82%;使低产田犁底层和高产田耕层(10~20 cm)土壤w(ASOC)显著增加,中产田耕层土壤w(ASOC)显著降低.施肥使土壤w(LFOC)增加了-42.60%~168.57%,平均增加了48.83%;使中产田表层和犁底层、高产田表层和耕层土壤w(LFOC)显著增加,高产田犁底层土壤 w(LFOC)显著降低.施肥使土壤 w(DOC)增加了-42.74%~51.29%,平均增加了9.36%;使中产田耕层和犁底层、高产田表层和耕层土壤 w(DOC)显著增加,低产田耕层土壤 w(DOC)显著降低.施肥使土壤 w(MBC)增加了-1.16%~19.97%,平均增加了9.32%,除中产田耕层土壤之外其他土层土壤w(MBC)均有所增加.施肥主要提高土壤ASOC和LFOC含量,促进土壤DOC的变化.施肥显著增加低产田土壤有机碳组分含量,促进中产田土壤有机碳组分变化,增加高产田土壤有机碳耗损.施肥主要增加表层(0~10 cm)土壤有机碳组分含量,耗损犁底层(20~40 cm)土壤有机碳,调解耕层(10~20 cm)土壤活性有机碳组分.施肥对微生物可利用性及结构不同的活性有机碳组分影响不同;高、中、低产田因其土壤理化性状及有机碳本底值不同,对施肥的响应存在差异.施肥总体增加土壤活性有机碳各组分含量,同时通过改变微生物及玉米根系活力影响活性有机碳含量及组分.土壤中有机碳组分与产量的回归方程为(产量)=-4665.61-0.008×w(SOC)-0.421×w (ASOC)-0.777×w (LFOC)+5.370×w (DOC)+33.408×w (MBC).ASOC和MBC具有土壤肥力指示作用,施肥主要通过调控土壤ASOC提高玉米产量.
選取遼河灌區不同肥力水平春玉米(Zea mays ssp. mays L.)農田土壤為研究對象,通過連續3年田間定位試驗研究施肥對不同層次土壤有機碳組分(TOC、ASOC、LFOC、DOC和MBC)的影響,分析土壤有機碳組分的產量效應.結果錶明,連續種植春玉米能夠顯著增加低產田土壤w(TOC),增加各產田土壤w(ASOC)和w(MBC),降低各產田土壤w(LFOC),土壤w(DOC)變化較小.施肥使土壤w(TOC)增加瞭-13.41%~7.54%,平均增加瞭0.16%;使高產田錶層(0~10 cm)土壤w(TOC)顯著增加,低產田犛底層(20~40 cm)土壤w(TOC)顯著降低.施肥使土壤w(ASOC)增加瞭-13.98%~72.22%,平均增加瞭15.82%;使低產田犛底層和高產田耕層(10~20 cm)土壤w(ASOC)顯著增加,中產田耕層土壤w(ASOC)顯著降低.施肥使土壤w(LFOC)增加瞭-42.60%~168.57%,平均增加瞭48.83%;使中產田錶層和犛底層、高產田錶層和耕層土壤w(LFOC)顯著增加,高產田犛底層土壤 w(LFOC)顯著降低.施肥使土壤 w(DOC)增加瞭-42.74%~51.29%,平均增加瞭9.36%;使中產田耕層和犛底層、高產田錶層和耕層土壤 w(DOC)顯著增加,低產田耕層土壤 w(DOC)顯著降低.施肥使土壤 w(MBC)增加瞭-1.16%~19.97%,平均增加瞭9.32%,除中產田耕層土壤之外其他土層土壤w(MBC)均有所增加.施肥主要提高土壤ASOC和LFOC含量,促進土壤DOC的變化.施肥顯著增加低產田土壤有機碳組分含量,促進中產田土壤有機碳組分變化,增加高產田土壤有機碳耗損.施肥主要增加錶層(0~10 cm)土壤有機碳組分含量,耗損犛底層(20~40 cm)土壤有機碳,調解耕層(10~20 cm)土壤活性有機碳組分.施肥對微生物可利用性及結構不同的活性有機碳組分影響不同;高、中、低產田因其土壤理化性狀及有機碳本底值不同,對施肥的響應存在差異.施肥總體增加土壤活性有機碳各組分含量,同時通過改變微生物及玉米根繫活力影響活性有機碳含量及組分.土壤中有機碳組分與產量的迴歸方程為(產量)=-4665.61-0.008×w(SOC)-0.421×w (ASOC)-0.777×w (LFOC)+5.370×w (DOC)+33.408×w (MBC).ASOC和MBC具有土壤肥力指示作用,施肥主要通過調控土壤ASOC提高玉米產量.
선취료하관구불동비력수평춘옥미(Zea mays ssp. mays L.)농전토양위연구대상,통과련속3년전간정위시험연구시비대불동층차토양유궤탄조분(TOC、ASOC、LFOC、DOC화MBC)적영향,분석토양유궤탄조분적산량효응.결과표명,련속충식춘옥미능구현저증가저산전토양w(TOC),증가각산전토양w(ASOC)화w(MBC),강저각산전토양w(LFOC),토양w(DOC)변화교소.시비사토양w(TOC)증가료-13.41%~7.54%,평균증가료0.16%;사고산전표층(0~10 cm)토양w(TOC)현저증가,저산전리저층(20~40 cm)토양w(TOC)현저강저.시비사토양w(ASOC)증가료-13.98%~72.22%,평균증가료15.82%;사저산전리저층화고산전경층(10~20 cm)토양w(ASOC)현저증가,중산전경층토양w(ASOC)현저강저.시비사토양w(LFOC)증가료-42.60%~168.57%,평균증가료48.83%;사중산전표층화리저층、고산전표층화경층토양w(LFOC)현저증가,고산전리저층토양 w(LFOC)현저강저.시비사토양 w(DOC)증가료-42.74%~51.29%,평균증가료9.36%;사중산전경층화리저층、고산전표층화경층토양 w(DOC)현저증가,저산전경층토양 w(DOC)현저강저.시비사토양 w(MBC)증가료-1.16%~19.97%,평균증가료9.32%,제중산전경층토양지외기타토층토양w(MBC)균유소증가.시비주요제고토양ASOC화LFOC함량,촉진토양DOC적변화.시비현저증가저산전토양유궤탄조분함량,촉진중산전토양유궤탄조분변화,증가고산전토양유궤탄모손.시비주요증가표층(0~10 cm)토양유궤탄조분함량,모손리저층(20~40 cm)토양유궤탄,조해경층(10~20 cm)토양활성유궤탄조분.시비대미생물가이용성급결구불동적활성유궤탄조분영향불동;고、중、저산전인기토양이화성상급유궤탄본저치불동,대시비적향응존재차이.시비총체증가토양활성유궤탄각조분함량,동시통과개변미생물급옥미근계활력영향활성유궤탄함량급조분.토양중유궤탄조분여산량적회귀방정위(산량)=-4665.61-0.008×w(SOC)-0.421×w (ASOC)-0.777×w (LFOC)+5.370×w (DOC)+33.408×w (MBC).ASOC화MBC구유토양비력지시작용,시비주요통과조공토양ASOC제고옥미산량.
This article selected the different fertility levels farmland soil planted spring maize (Zea mays ssp. mays L.) in Liaohe Irrigation for the study object. Through three consecutive years field experiment, the effects of fertilization on the constituents of soil organic carbon (TOC, ASOC, LFOC, DOC and MBC) were studied in different soil depths and the yield effect of soil organic carbon constituents were analyzed. The results indicated that consecutive planting spring maize significantly increased the w(TOC) in the low-yielding field, increased the w(ASOC) and w(MBC) and reduced the w(LFOC) in all types field soil, and the changes of w(DOC) was small. The fertilization made the w(TOC) increasing from -13.41% to 7.54%, by an average of 0.16%. It made the w(TOC) significantly increasing in the surface layer soil (0-10 cm) of high-yielding field, and made the w(TOC) significantly reducing in the plow ground floor soil (20-40 cm) of low-yielding field. The fertilization made the w(ASOC) increasing from-13.98%to 72.22%, by an average of 15.82%. It made the w(ASOC) significantly increasing in the plow ground floor soil of low-yielding field and in the plow layer soil (10-20 cm) of high-yielding field, and made the w(ASOC) significantly reducing in the plow layer soil of middle-yielding field. The fertilization made the w(LFOC) increasing from-42.60%to 168.57%, by an average of 48.83%. It made the w(LFOC) significantly increasing in the surface layer and plow ground floor soil of middle-yielding field and in the surface layer and plow layer soil of high-yielding field, and made the w(ASOC) significantly reducing in the plow ground floor soil of high-yielding field. The fertilization made the w(DOC) increasing from -42.74% to 51.29%, by an average of 9.36%. It made the w(DOC) significantly increasing in the plow layer and plow ground floor soil of middle-yielding field and in the surface layer and plow layer soil of high-yielding field, and made the w(DOC) significantly reducing in the plow layer soil of low-yielding field. The fertilization made the w(MBC) increasing from-1.16%to 19.97%, by an average of 9.32%. In addition to plow layer soil of middle-yielding field,the w(MBC) were increased. The fertilization mainly increased the contents of ASOC and LFOC, and promoted the changes of soil DOC. The fertilization significantly increased the contents of soil organic carbon (SOC) in low-yielding field, promoted the changes of SOC in middle-yielding field, and increased the depletion of SOC in high-yielding field. The fertilization mainly increased the contents of SOC in the surface layer soil, depleted the SOC in plow ground floor soil, and mediated the components of ASOC in plow layer soil. The fertilization influenced different on the bioavailability and the component of ASOC with different structures. The physical and chemical properties of soil and the background value of SOC were different for high, middle and low-yielding field, so that their reactions were very different to the fertilization. The fertilization overall increased the contents of each component of ASOC, and influenced the contents and components of ASOC through changing the microorganism and the activity of corn root. The regression equation of the SOC contents and yield was expressed as follow: yield=-4 665.61-0.008×w(SOC)-0.421×w(ASOC)-0.777×w(LFOC)+5.370×w(DOC)+33.408×w(MBC). The ASOC and MBC are provided with indicative function of soil fertility. The fertilization increased the yield of corn mainly by mediating contents of ASOC in soil.