化工进展
化工進展
화공진전
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS
2013年
5期
1183-1186
,共4页
李明%殷杰%孟勇%钟文周%兰支利%尹笃林
李明%慇傑%孟勇%鐘文週%蘭支利%尹篤林
리명%은걸%맹용%종문주%란지리%윤독림
三维电催化%粒子电极%固相焙烧%2-二乙胺基-6-甲基-4-羟基嘧啶
三維電催化%粒子電極%固相焙燒%2-二乙胺基-6-甲基-4-羥基嘧啶
삼유전최화%입자전겁%고상배소%2-이을알기-6-갑기-4-간기밀정
three-dimensional electrocatalytic%particle electrode%solid phase calcination%2-diethylamino-6-methyl-4-hydroxypyrimidine
以陶土为基体、金属氧化物为活性组分,采用固相焙烧制备了一系列的粒子电极,并以三维电催化氧化降解2-二乙胺基-6-甲基-4-羟基嘧啶模拟废水实验考察了各粒子电极的催化活性及稳定性.结果表明:氧化铜与氧化锌的配比分别为0.25 mol和0.1 mol每千克陶土,1000℃下焙烧2 h制备的粒子电极催化活性最高,在槽电压15 V,初始pH值为3、极板间距6 cm、支持电解质30 g/L,曝气40 L/h,处理150 min后,2-二乙胺基-6-甲基-4-羟基嘧啶和COD的去除率可分别达到83.45%和35.17%,且催化性能稳定.对降解机理的研究表明,2-二乙胺基-6-甲基-4-羟基嘧啶的主要降解反应为嘧啶环开环转化成小分子含氮化合物,而嘧啶开环后产物的矿化速度相对较慢.
以陶土為基體、金屬氧化物為活性組分,採用固相焙燒製備瞭一繫列的粒子電極,併以三維電催化氧化降解2-二乙胺基-6-甲基-4-羥基嘧啶模擬廢水實驗攷察瞭各粒子電極的催化活性及穩定性.結果錶明:氧化銅與氧化鋅的配比分彆為0.25 mol和0.1 mol每韆剋陶土,1000℃下焙燒2 h製備的粒子電極催化活性最高,在槽電壓15 V,初始pH值為3、極闆間距6 cm、支持電解質30 g/L,曝氣40 L/h,處理150 min後,2-二乙胺基-6-甲基-4-羥基嘧啶和COD的去除率可分彆達到83.45%和35.17%,且催化性能穩定.對降解機理的研究錶明,2-二乙胺基-6-甲基-4-羥基嘧啶的主要降解反應為嘧啶環開環轉化成小分子含氮化閤物,而嘧啶開環後產物的礦化速度相對較慢.
이도토위기체、금속양화물위활성조분,채용고상배소제비료일계렬적입자전겁,병이삼유전최화양화강해2-이을알기-6-갑기-4-간기밀정모의폐수실험고찰료각입자전겁적최화활성급은정성.결과표명:양화동여양화자적배비분별위0.25 mol화0.1 mol매천극도토,1000℃하배소2 h제비적입자전겁최화활성최고,재조전압15 V,초시pH치위3、겁판간거6 cm、지지전해질30 g/L,폭기40 L/h,처리150 min후,2-이을알기-6-갑기-4-간기밀정화COD적거제솔가분별체도83.45%화35.17%,차최화성능은정.대강해궤리적연구표명,2-이을알기-6-갑기-4-간기밀정적주요강해반응위밀정배개배전화성소분자함담화합물,이밀정개배후산물적광화속도상대교만.
A series of particle electrodes were prepared by solid phase calcination method using pottery clay as substrate,mental oxide as active component. The catalytic activity of particle electrodes were investigated by the treatment of 2-diethylamino-6-methyl-4-hydroxypyrimidine simulated wastewater under three-dimensional electrocatalytic oxidation conditions. When the ratio of copper oxide and zinc oxide was 0.25 mole and 0.1 mole per Kilogram Pottery Clay,respectively,calcined temperature had been kept at 1000 ℃ for 2h , the activity of prepared particle electrode was the highest. The 2-diethylamino-6-methyl-4-hydroxypyrimidine removal rate and CODCr removal rate was 83.45%and 35.17%,respectively,under cell voltage 15V,initial pH 3,electrode span 6cm,supporting electrolyte 30g/L,airflow 40L/h,150 min after the treatment,and the particle electrode indicates high catalytic stability. The study on degradation mechanism shows that the main degradation reaction of the 2-diethylamino-6-methyl-4-hydroxypyrimidine is the opening of pyrimidine ring into small nitrogen-containing compound,while the mineralization rate of the products after pyrimidine ring is destroyed is relatively low.