机床与液压
機床與液壓
궤상여액압
MACHINE TOOL & HYDRAULICS
2013年
7期
63-65
,共3页
韩绍民%赵庆志%辛庆杰%赵森
韓紹民%趙慶誌%辛慶傑%趙森
한소민%조경지%신경걸%조삼
BP神经网络%6-UPU教学并联机床%样本%精度
BP神經網絡%6-UPU教學併聯機床%樣本%精度
BP신경망락%6-UPU교학병련궤상%양본%정도
BP neural network%6-UPU parallel machine tool%Sample%Precision
以6UPU教学型并联机床为实验平台,以壳体铝合金零件加工为研究对象,提取加工尺寸误差样本数据,采用BP神经网络建立加工尺寸误差预测模型,通过分析6UPU教学型并联机床误差,提出实验数据与样本数据的处理原则,全面考虑到加工过程中各种情况.提出的基于BP网络来预测加工误差具有较强的实用性和一定的先进性,能有效提高加工精度,为提高开环数控系统精度提供了新的途径.
以6UPU教學型併聯機床為實驗平檯,以殼體鋁閤金零件加工為研究對象,提取加工呎吋誤差樣本數據,採用BP神經網絡建立加工呎吋誤差預測模型,通過分析6UPU教學型併聯機床誤差,提齣實驗數據與樣本數據的處理原則,全麵攷慮到加工過程中各種情況.提齣的基于BP網絡來預測加工誤差具有較彊的實用性和一定的先進性,能有效提高加工精度,為提高開環數控繫統精度提供瞭新的途徑.
이6UPU교학형병련궤상위실험평태,이각체려합금령건가공위연구대상,제취가공척촌오차양본수거,채용BP신경망락건립가공척촌오차예측모형,통과분석6UPU교학형병련궤상오차,제출실험수거여양본수거적처리원칙,전면고필도가공과정중각충정황.제출적기우BP망락래예측가공오차구유교강적실용성화일정적선진성,능유효제고가공정도,위제고개배수공계통정도제공료신적도경.
A study on the processing of an aluminum shell component with a 6UPU parallel machine tool was made. The sample data of the finish size error were extracted and a model for the finish size error prediction was set up by using BP neural network. Through analyzing the error of 6UPU teaching parallel machine tool,the processing principle of the experimental data and sample data was put forward,with overall consideration about the processing situations. The proposed prediction of processing error based on BP neural network has strong practicability and advanced nature,and it can effectively improve the machining precision,and it also provides a new way to improve the accuracy of the open loop numerical control system.