机床与液压
機床與液壓
궤상여액압
MACHINE TOOL & HYDRAULICS
2013年
7期
202-204
,共3页
小波包%隐马尔科夫模型%机床%状态识别
小波包%隱馬爾科伕模型%機床%狀態識彆
소파포%은마이과부모형%궤상%상태식별
Wavelet packet%HMM%Machine tools%State recognition
机床加工状态对加工工件质量有很大的影响,因此识别机床加工状态有重要的意义.依据采集的机床加工数据,通过FFT频谱分析,划分出机床加工的3种状态.利用小波包分解,分别求出各种状态在不同频带节点上的能量分布百分比,并把它作为隐马尔科夫模型的输入特征向量.按照隐马尔科夫模型模式识别方法,建立3种标准状态的训练优化模型库,把测试样本代入优化模型库中,依据最大对数似然值对机床的加工状态进行了识别.计算结果表明,状态识别结果正确.
機床加工狀態對加工工件質量有很大的影響,因此識彆機床加工狀態有重要的意義.依據採集的機床加工數據,通過FFT頻譜分析,劃分齣機床加工的3種狀態.利用小波包分解,分彆求齣各種狀態在不同頻帶節點上的能量分佈百分比,併把它作為隱馬爾科伕模型的輸入特徵嚮量.按照隱馬爾科伕模型模式識彆方法,建立3種標準狀態的訓練優化模型庫,把測試樣本代入優化模型庫中,依據最大對數似然值對機床的加工狀態進行瞭識彆.計算結果錶明,狀態識彆結果正確.
궤상가공상태대가공공건질량유흔대적영향,인차식별궤상가공상태유중요적의의.의거채집적궤상가공수거,통과FFT빈보분석,화분출궤상가공적3충상태.이용소파포분해,분별구출각충상태재불동빈대절점상적능량분포백분비,병파타작위은마이과부모형적수입특정향량.안조은마이과부모형모식식별방법,건립3충표준상태적훈련우화모형고,파측시양본대입우화모형고중,의거최대대수사연치대궤상적가공상태진행료식별.계산결과표명,상태식별결과정학.
The states of machine tools processing are very important to quality of workpiece,so state recognition of machine tools processing is very significance. The machine tool processing was divided into three states by FFT spectrum analysis according to sample data. The energy distribution of frequency band by wavelet packet decomposition was regarded as the feather vector of HMM. According to the HMM pattern recognition method,training optimization model library of three standard states was set up. A case was studied for the state recognition of machine tool processing after the test samples were substituted into optimization model library. It is shown that the recognition results are correct by the wavelet packetHMM method.