农业工程学报
農業工程學報
농업공정학보
2013年
10期
64-70
,共7页
黄夏旭%申焱华*%杨珏%张文明
黃夏旭%申焱華*%楊玨%張文明
황하욱%신염화*%양각%장문명
悬架%自卸车%热问题%集中参数热模型法
懸架%自卸車%熱問題%集中參數熱模型法
현가%자사차%열문제%집중삼수열모형법
suspension%trucks%heat problems%thermal model of lumped parameter
针对目前非公路自卸车油气悬架系统温度变化的研究中未考虑缸筒和活塞杆热容的问题,该文引入集中参数热模型法对非公路自卸车油气悬架系统温度变化进行研究.运用热学理论、气体状态方程,建立包含缸筒、活塞杆热容的非公路自卸车油气悬架系统的集中参数热力学模型.通过求解热力学模型方程组,分析非公路自卸车油气悬架系统中油液温度的变化趋势,并将结果与试验结果进行了对比.对比的结果表明集中参数热力学模型能较准确的描述非公路自卸车油气悬架的热力学状态,而且考虑缸筒、活塞杆热容量会增加系统的温度变化的迟滞效应.该研究将有利于精确描述非公路自卸车油气悬架的动力学特性,同时也为其他工程或农用车辆上油气悬架热力学研究提供了有益的参考.
針對目前非公路自卸車油氣懸架繫統溫度變化的研究中未攷慮缸筒和活塞桿熱容的問題,該文引入集中參數熱模型法對非公路自卸車油氣懸架繫統溫度變化進行研究.運用熱學理論、氣體狀態方程,建立包含缸筒、活塞桿熱容的非公路自卸車油氣懸架繫統的集中參數熱力學模型.通過求解熱力學模型方程組,分析非公路自卸車油氣懸架繫統中油液溫度的變化趨勢,併將結果與試驗結果進行瞭對比.對比的結果錶明集中參數熱力學模型能較準確的描述非公路自卸車油氣懸架的熱力學狀態,而且攷慮缸筒、活塞桿熱容量會增加繫統的溫度變化的遲滯效應.該研究將有利于精確描述非公路自卸車油氣懸架的動力學特性,同時也為其他工程或農用車輛上油氣懸架熱力學研究提供瞭有益的參攷.
침대목전비공로자사차유기현가계통온도변화적연구중미고필항통화활새간열용적문제,해문인입집중삼수열모형법대비공로자사차유기현가계통온도변화진행연구.운용열학이론、기체상태방정,건립포함항통、활새간열용적비공로자사차유기현가계통적집중삼수열역학모형.통과구해열역학모형방정조,분석비공로자사차유기현가계통중유액온도적변화추세,병장결과여시험결과진행료대비.대비적결과표명집중삼수열역학모형능교준학적묘술비공로자사차유기현가적열역학상태,이차고필항통、활새간열용량회증가계통적온도변화적지체효응.해연구장유리우정학묘술비공로자사차유기현가적동역학특성,동시야위기타공정혹농용차량상유기현가열역학연구제공료유익적삼고.
Hydro-pneumatic suspension is an important part of off-highway dump trucks. It represents a compromise between ride comfort and handling stability via its nonlinear character. Off-highway dump trucks generally use the single air chamber hydro-pneumatic suspension system to achieve a vehicle's reliability and economy. But the effect of temperature changes on the output force characteristics of the hydro-pneumatic suspension, which results in ride comfort and ride height, is one of the urgent problems in its design and use. This paper presents a thermodynamic study of the hydro-pneumatic suspension using a lumped parameter model. It is known that this method is used to solve thermal problems by analyzing thermal networks by analogy to electrical circuits. This method has been used for a long time to calculate the temperature rises in electrical and spacecraft systems. Different from other studies, the cylinder and the piston rod thermal capacitance are taken into consideration in this study. During the study, the suspension system is divided into a number of lumped components. Each component has a thermal storage and interconnections to neighbor components through a linear mesh of thermal resistances. The heat is generated by oil flows through the damping orifices and nitrogen compression. Then, based on the gas state equation and thermodynamic theory, the nonlinear equations of the thermal model are established, which originally contain the heat capacity of the cylinder, the piston, and the oil. The simulation analysis is carried out under the model. The results show that, except for the oil in the bottom of the piston rod, while considering the thermal capacitance of the cylinder and piston, the temperature of the suspension system rises slower than if those capacitances are ignored. A validation experiment is performed to confirm the predicted results. The oil temperature in the initial stage of the experiment decreased first and then increased, which is different from the calculated value's monotonically upward trend. This may be caused by the fact that the oil from the static to flow requires a certain amount of energy in the initial stage of the experiment, while the external input of energy is shortage. Due to the measurement error, the lack of detail in lumped element division, and some other reasons, there are some differences between the experimental data and calculated values, but the tendencies of the experimental and calculated temperature rise of the suspension system are the similar. The comparison results show that the proposed model can describe the thermodynamic state of the hydro-pneumatic suspension more accurately than previous methods. The thermal capacitance of the cylinder and piston will increase the hysteresis effect of temperature changes.