农业工程学报
農業工程學報
농업공정학보
2013年
10期
225-233
,共9页
温室%温度控制%不确定性分析%灰色预测%节能
溫室%溫度控製%不確定性分析%灰色預測%節能
온실%온도공제%불학정성분석%회색예측%절능
greenhouses%temperature control%uncertainty analysis%grey prediction
温室温度常规控制方法的控制效果依赖于被控对象模型精确度和干扰测量精确度.而温室系统不确定性、不精确性、时变性和多扰动等特性使温室精确模型很难获得、且干扰很难精确测量.为此,该文采用灰色预测补偿算法对温室对象上述特性进行预测补偿,其优点是可避开温室对象不确定性和干扰因素所带来的在获取对象模型时无法避免的理论和技术上的障碍,摆脱了控制算法对模型精确度和干扰测量精确度的依赖.仿真及实际运行情况均表明,该算法可达到较好的控制效果,控制精度明显提高.统计分析显示,表征不确定性与干扰的灰参量估计值与真值的相关系数分别为0.9968、0.9804、0.9938,决定系数分别为0.9935、0.9585、0.9871;灰参量绝对误差均值为-0.11510、-0.26733、-0.31035,方差为0.05150、0.16324、0.09474,相对误差均值为-1.68%、-8.06%、-8.73%,方差为0.01368、0.00533、0.00581;实测温度曲线与仿真温度曲线相关系数为0.973972,决定系数为0.948621.由于有效地减弱或消除了温度调节过程中的超调和振荡,能耗明显降低,既满足了温度变化的预期要求,又可实现节能.
溫室溫度常規控製方法的控製效果依賴于被控對象模型精確度和榦擾測量精確度.而溫室繫統不確定性、不精確性、時變性和多擾動等特性使溫室精確模型很難穫得、且榦擾很難精確測量.為此,該文採用灰色預測補償算法對溫室對象上述特性進行預測補償,其優點是可避開溫室對象不確定性和榦擾因素所帶來的在穫取對象模型時無法避免的理論和技術上的障礙,襬脫瞭控製算法對模型精確度和榦擾測量精確度的依賴.倣真及實際運行情況均錶明,該算法可達到較好的控製效果,控製精度明顯提高.統計分析顯示,錶徵不確定性與榦擾的灰參量估計值與真值的相關繫數分彆為0.9968、0.9804、0.9938,決定繫數分彆為0.9935、0.9585、0.9871;灰參量絕對誤差均值為-0.11510、-0.26733、-0.31035,方差為0.05150、0.16324、0.09474,相對誤差均值為-1.68%、-8.06%、-8.73%,方差為0.01368、0.00533、0.00581;實測溫度麯線與倣真溫度麯線相關繫數為0.973972,決定繫數為0.948621.由于有效地減弱或消除瞭溫度調節過程中的超調和振盪,能耗明顯降低,既滿足瞭溫度變化的預期要求,又可實現節能.
온실온도상규공제방법적공제효과의뢰우피공대상모형정학도화간우측량정학도.이온실계통불학정성、불정학성、시변성화다우동등특성사온실정학모형흔난획득、차간우흔난정학측량.위차,해문채용회색예측보상산법대온실대상상술특성진행예측보상,기우점시가피개온실대상불학정성화간우인소소대래적재획취대상모형시무법피면적이론화기술상적장애,파탈료공제산법대모형정학도화간우측량정학도적의뢰.방진급실제운행정황균표명,해산법가체도교호적공제효과,공제정도명현제고.통계분석현시,표정불학정성여간우적회삼량고계치여진치적상관계수분별위0.9968、0.9804、0.9938,결정계수분별위0.9935、0.9585、0.9871;회삼량절대오차균치위-0.11510、-0.26733、-0.31035,방차위0.05150、0.16324、0.09474,상대오차균치위-1.68%、-8.06%、-8.73%,방차위0.01368、0.00533、0.00581;실측온도곡선여방진온도곡선상관계수위0.973972,결정계수위0.948621.유우유효지감약혹소제료온도조절과정중적초조화진탕,능모명현강저,기만족료온도변화적예기요구,우가실현절능.
The control effect of the conventional control method to the greenhouse temperature depends on the accuracy of the plant model and interference measurement. However, an accurate model of the greenhouse is difficult to obtain because of characteristics of the greenhouse such as uncertainty, imprecision, time-varying, multi-disturbance, etc., with the interference being particularly difficult to accurately measure. For example, the conventional PID control algorithm, widely used in many respects with a good performance record, has poor adaptability and weak robustness when used in greenhouses, and the smith predictive control, used in time delay systems to compensate temperature hysteresis, requires precise mathematical object model. Thus, the usual PID+Smith predictor controller often has overshoot and oscillation, generating a large amount of energy consumption in the process of temperature adjustment when used in the greenhouse temperature control system. Therefore, the grey prediction compensation control algorithm is adopted for compensating the aforementioned characteristics of the greenhouse. The advantage of the proposed control strategy is its getting rid of the dependence on conventional control algorithms in the plant model accuracy and interference measurement accuracy, and bypassing the theoretical and technical obstacles in obtaining the object model and interference. Both the simulation and actual operation indicated that the proposed control strategy achieves satisfactory control effect and the system accuracy is significantly improved. Statistical analysis indicated that the correlation coefficients between the estimated value and the true value of the uncertainty and interference grey parameters is 0.9968, 0.9804, and 0.9938, respectively, and the coefficient of determination between them is 0.9935, 0.9585, and 0.9871, respectively. The grey parameters absolute error mean is -0.11510,-0.26733, and-0.31035, and the variance is 0.05150, 0.16324, and 0.09474, the grey parameters relative error mean is-1.68%,-8.06%, and-8.73%, and the variance is 0.01368, 0.00533, and 0.00581. The correlation coefficient between the measured temperature curve and the simulation temperature curve is 0.973972, and the coefficient of determination between them is 0.948621. Also, the overshoot and oscillation in the process of temperature regulation is weakened or eliminated, so the energy consumption is greatly reduced, which not only meets the temperature requirements, but also achieves energy-savings.