中国医疗器械杂志
中國醫療器械雜誌
중국의료기계잡지
CHINESE JOURNAL OF MEDICAL INSTRUMENTATION
2013年
2期
79-83
,共5页
孙洪央%徐祖洋%王静%雷沛%吴开杰%柴新禹
孫洪央%徐祖洋%王靜%雷沛%吳開傑%柴新禹
손홍앙%서조양%왕정%뢰패%오개걸%시신우
情感计算%情绪识别%心理压力%PSO%kNN
情感計算%情緒識彆%心理壓力%PSO%kNN
정감계산%정서식별%심리압력%PSO%kNN
affective computing%emotion recognition%stress%PSO%kNN
压力能诱发兴奋、厌烦、恐惧等多种不同的情绪,不同程度的某种压力能诱发不同程度的情绪.本文通过设计情绪诱发实验,分别诱发出被试平静、兴奋、厌烦、恐惧情绪以及低度、中度、高度三种紧张情绪程度.基于这些情绪状态下被试的心率、呼吸率等六种生理信号,去除基线预处理后进行特征提取,结合粒子群优化算法对特征进行选择,采用k近邻算法对压力状态下的不同情绪及紧张情绪程度进行分类.实验结果表明,通过基线去除及粒子群特征选择优化后k近邻分类,与传统k近邻分类相比,具有更好的识别效果.
壓力能誘髮興奮、厭煩、恐懼等多種不同的情緒,不同程度的某種壓力能誘髮不同程度的情緒.本文通過設計情緒誘髮實驗,分彆誘髮齣被試平靜、興奮、厭煩、恐懼情緒以及低度、中度、高度三種緊張情緒程度.基于這些情緒狀態下被試的心率、呼吸率等六種生理信號,去除基線預處理後進行特徵提取,結閤粒子群優化算法對特徵進行選擇,採用k近鄰算法對壓力狀態下的不同情緒及緊張情緒程度進行分類.實驗結果錶明,通過基線去除及粒子群特徵選擇優化後k近鄰分類,與傳統k近鄰分類相比,具有更好的識彆效果.
압력능유발흥강、염번、공구등다충불동적정서,불동정도적모충압력능유발불동정도적정서.본문통과설계정서유발실험,분별유발출피시평정、흥강、염번、공구정서이급저도、중도、고도삼충긴장정서정도.기우저사정서상태하피시적심솔、호흡솔등륙충생리신호,거제기선예처리후진행특정제취,결합입자군우화산법대특정진행선택,채용k근린산법대압력상태하적불동정서급긴장정서정도진행분류.실험결과표명,통과기선거제급입자군특정선택우화후k근린분류,여전통k근린분류상비,구유경호적식별효과.
@@@@In this paper, experiments were designed for inducing neutral, terrified, excited, annoying emotions, and also low, middle, high, three levels of tension emotions of stress state, respectively. Based on the multi physiological signals generated by the subjects in emotions, such as heart rate and respiration rate and so on, we extracted features from these data which had been eliminated the baseline. Then the Particle Swarm Optimization method was adopted to optimize the features selection from the features of multi physiological signals, and combined with k-Nearest Neighbor algorithm, different emotions and varying degree tensions were classified. The result shows that the classification accuracy of the kNN method with SPO and baseline eliminated is better than the traditional kNN method.