中国医疗器械杂志
中國醫療器械雜誌
중국의료기계잡지
CHINESE JOURNAL OF MEDICAL INSTRUMENTATION
2013年
2期
92-95
,共4页
钟丽莎%万江中%黄志伟%郭兴明%段赟
鐘麗莎%萬江中%黃誌偉%郭興明%段赟
종려사%만강중%황지위%곽흥명%단빈
心音信号%生物识别%高斯混合模型%小波去噪%线性预测倒谱系数%Mel频率倒谱系数
心音信號%生物識彆%高斯混閤模型%小波去譟%線性預測倒譜繫數%Mel頻率倒譜繫數
심음신호%생물식별%고사혼합모형%소파거조%선성예측도보계수%Mel빈솔도보계수
heart sound%biometric GMM%wavelet denoising%LPCC%MFCC
目的将倒谱系数提取和高斯混合模型(GMM)相结合,提出了一种基于心音信号的生物识别方法.方法首先心音信号预处理小波去噪,然后进行特征参数的选择,对比研究了线性预测倒谱系数(LPCC)和Mel频率倒谱系数(MFCC),再用高斯混合模型(GMM)进行识别.最后利用50名志愿者的100段心音信号对所提出的方法进行验证.结果对比实验证明LPCC比MFCC更适合用于心音信号的生物识别研究,通过对每段心音信号进行小波去噪,取得了比传统GMM方法更高的识别率.结论表明该方法能够有效提高系统的识别性能,达到了比较理想的识别效果.
目的將倒譜繫數提取和高斯混閤模型(GMM)相結閤,提齣瞭一種基于心音信號的生物識彆方法.方法首先心音信號預處理小波去譟,然後進行特徵參數的選擇,對比研究瞭線性預測倒譜繫數(LPCC)和Mel頻率倒譜繫數(MFCC),再用高斯混閤模型(GMM)進行識彆.最後利用50名誌願者的100段心音信號對所提齣的方法進行驗證.結果對比實驗證明LPCC比MFCC更適閤用于心音信號的生物識彆研究,通過對每段心音信號進行小波去譟,取得瞭比傳統GMM方法更高的識彆率.結論錶明該方法能夠有效提高繫統的識彆性能,達到瞭比較理想的識彆效果.
목적장도보계수제취화고사혼합모형(GMM)상결합,제출료일충기우심음신호적생물식별방법.방법수선심음신호예처리소파거조,연후진행특정삼수적선택,대비연구료선성예측도보계수(LPCC)화Mel빈솔도보계수(MFCC),재용고사혼합모형(GMM)진행식별.최후이용50명지원자적100단심음신호대소제출적방법진행험증.결과대비실험증명LPCC비MFCC경괄합용우심음신호적생물식별연구,통과대매단심음신호진행소파거조,취득료비전통GMM방법경고적식별솔.결론표명해방법능구유효제고계통적식별성능,체도료비교이상적식별효과.
Objective Extraction of cepstral coefficients combined with Gaussian Mixture Model (GMM) is used to propose a biometric method based on heart sound signal. Methods Firstly, the original heart sounds signal was preprocessed by wavelet denoising. Then, Linear Prediction Cepstral Coefficients (LPCC) and Mel Frequency Cepstral Coefficients (MFCC) are compared to extract representative features and develops hidden Markov model (HMM) for signal classification. At last, the experiment col ects 100 heart sounds from 50 people to test the proposed algorithm. Results The comparative experiments prove that LPCC is more suitable than MFCC for heart sound biometric, and by wavelet denoising in each piece of heart sound signal, the system achieves higher recognition rate than traditional GMM. Conclusion Those results show that this method can effectively improve the recognition performance of the system and achieve a satisfactory effect.