物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
6期
1209-1218
,共10页
田文宇%刘晓宇%黎春%王路化%郑仲%刘春立*
田文宇%劉曉宇%黎春%王路化%鄭仲%劉春立*
전문우%류효우%려춘%왕로화%정중%류춘립*
膨润土%孔隙水%离子平衡%Donnan模型%Poisson-Boltzmann模型
膨潤土%孔隙水%離子平衡%Donnan模型%Poisson-Boltzmann模型
팽윤토%공극수%리자평형%Donnan모형%Poisson-Boltzmann모형
Bentonite%Porewater%Ion equilibrium%Donnan model%Poisson-Boltzmann model
压实膨润土孔隙水与外部溶液之间的离子平衡是影响离子在压实膨润土中扩散的影响因素之一,表征这一平衡的离子平衡系数可用压实膨润土的宏观属性参数通过Donnan模型计算得到.通过对膨润土主体矿物蒙脱石的TOT层结构单元进行简化,构建了一个压实膨润土的单类孔隙结构模型,辅以一个尺度变量H,用Poisson-Boltzmann (PB)理论模型计算上述离子平衡系数.对比计算结果,发现PB模型计算的离子平衡系数总是大于Donnan模型的结果,而参数H是联系这两种模型之间的桥梁.通过对参数H取极限H→0,实现了从PB 模型到 Donnan 模型的数学变换,并从机理上讨论了两种模型之间的差异及其在实际扩散问题中的应用.分析表明PB模型更符合离子在压实膨润土中扩散的实际情况,更适于处理实际扩散问题.
壓實膨潤土孔隙水與外部溶液之間的離子平衡是影響離子在壓實膨潤土中擴散的影響因素之一,錶徵這一平衡的離子平衡繫數可用壓實膨潤土的宏觀屬性參數通過Donnan模型計算得到.通過對膨潤土主體礦物矇脫石的TOT層結構單元進行簡化,構建瞭一箇壓實膨潤土的單類孔隙結構模型,輔以一箇呎度變量H,用Poisson-Boltzmann (PB)理論模型計算上述離子平衡繫數.對比計算結果,髮現PB模型計算的離子平衡繫數總是大于Donnan模型的結果,而參數H是聯繫這兩種模型之間的橋樑.通過對參數H取極限H→0,實現瞭從PB 模型到 Donnan 模型的數學變換,併從機理上討論瞭兩種模型之間的差異及其在實際擴散問題中的應用.分析錶明PB模型更符閤離子在壓實膨潤土中擴散的實際情況,更適于處理實際擴散問題.
압실팽윤토공극수여외부용액지간적리자평형시영향리자재압실팽윤토중확산적영향인소지일,표정저일평형적리자평형계수가용압실팽윤토적굉관속성삼수통과Donnan모형계산득도.통과대팽윤토주체광물몽탈석적TOT층결구단원진행간화,구건료일개압실팽윤토적단류공극결구모형,보이일개척도변량H,용Poisson-Boltzmann (PB)이론모형계산상술리자평형계수.대비계산결과,발현PB모형계산적리자평형계수총시대우Donnan모형적결과,이삼수H시련계저량충모형지간적교량.통과대삼수H취겁한H→0,실현료종PB 모형도 Donnan 모형적수학변환,병종궤리상토론료량충모형지간적차이급기재실제확산문제중적응용.분석표명PB모형경부합리자재압실팽윤토중확산적실제정황,경괄우처리실제확산문제.
@@@@The ion equilibrium at the interface of solution within compacted bentonite, and the external solution is an important factor influencing the diffusion of ionic species in the compacted bentonite. The ion equilibrium can be calculated by the Donnan model using macroscopic compacted bentonite parameters. By constructing a single pore type structure model for compacted bentonite, where the montmoril onite TOT-layers are depicted as a paral el array of rectangles, the ion equilibrium can also be calculated by the Poisson-Boltzmann (PB) model with a scale-defining variable H. We demonstrated that the ion equilibrium coefficients calculated by the PB model are always larger than those calculated by the Donnan model, and the models are linked by the factor H. The mathematical transition from the PB model to the Donnan model occurs in the limiting case H→0. The application of the two models to diffusion problem is also discussed, and the PB model is shown to be more realistic and suitable for solving actual diffusion problems.