物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
6期
1266-1272
,共7页
冯星星%谢菁%胡庚申*%贾爱平%谢冠群%罗孟飞*
馮星星%謝菁%鬍庚申*%賈愛平%謝冠群%囉孟飛*
풍성성%사정%호경신*%가애평%사관군%라맹비*
介孔泡沫氧化硅%五乙烯六胺%吸附%CO2
介孔泡沫氧化硅%五乙烯六胺%吸附%CO2
개공포말양화규%오을희륙알%흡부%CO2
Mesostructure cel ar foam%Pentaethylenehexamine%Adsorption%CO2
以三嵌段共聚物P123(EO20-PO70-EO20)为模板剂合成了介孔泡沫氧化硅(MCF)材料. MCF经过五乙烯六胺(PEHA)修饰后用于捕捉CO2.采用扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附、傅里叶变换红外(FTIR)光谱、热重分析(TGA)对 MCF 和 MCF-PEHA 进行了表征.结果表明, PEHA 对 MCF 改性后,并没有破坏 MCF载体本身的结构. MCF-PEHA的CO2吸附量在75°C时达到最大.随着PEHA含量的增加, MCF-PEHA的CO2吸附量呈先增大后减小的趋势,当PEHA含量为70%(w)时, CO2吸附量达到最大,为3.55 mmol·g-1.水汽促进了吸附剂的CO2吸附性能.研究结果还表明, MCF-70吸附剂经过四次吸脱附循环,吸附性能基本保持不变,表现出很好的可再生性能.
以三嵌段共聚物P123(EO20-PO70-EO20)為模闆劑閤成瞭介孔泡沫氧化硅(MCF)材料. MCF經過五乙烯六胺(PEHA)脩飾後用于捕捉CO2.採用掃描電鏡(SEM)、透射電鏡(TEM)、N2吸附-脫附、傅裏葉變換紅外(FTIR)光譜、熱重分析(TGA)對 MCF 和 MCF-PEHA 進行瞭錶徵.結果錶明, PEHA 對 MCF 改性後,併沒有破壞 MCF載體本身的結構. MCF-PEHA的CO2吸附量在75°C時達到最大.隨著PEHA含量的增加, MCF-PEHA的CO2吸附量呈先增大後減小的趨勢,噹PEHA含量為70%(w)時, CO2吸附量達到最大,為3.55 mmol·g-1.水汽促進瞭吸附劑的CO2吸附性能.研究結果還錶明, MCF-70吸附劑經過四次吸脫附循環,吸附性能基本保持不變,錶現齣很好的可再生性能.
이삼감단공취물P123(EO20-PO70-EO20)위모판제합성료개공포말양화규(MCF)재료. MCF경과오을희륙알(PEHA)수식후용우포착CO2.채용소묘전경(SEM)、투사전경(TEM)、N2흡부-탈부、부리협변환홍외(FTIR)광보、열중분석(TGA)대 MCF 화 MCF-PEHA 진행료표정.결과표명, PEHA 대 MCF 개성후,병몰유파배 MCF재체본신적결구. MCF-PEHA적CO2흡부량재75°C시체도최대.수착PEHA함량적증가, MCF-PEHA적CO2흡부량정선증대후감소적추세,당PEHA함량위70%(w)시, CO2흡부량체도최대,위3.55 mmol·g-1.수기촉진료흡부제적CO2흡부성능.연구결과환표명, MCF-70흡부제경과사차흡탈부순배,흡부성능기본보지불변,표현출흔호적가재생성능.
@@@@Mesocel ular silica foam (MCF) was prepared using P123 (EO20-PO70-E20) as template and then functionalized with pentaethylenehexamine (PEHA) for CO2 adsorption. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms, Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA). These results indicated that after modification with PEHA, the structure of the support itself was undamaged. The highest CO2 adsorption capacity of MCF-PEHA was obtained at 75 °C. With increasing PEHA loading, the CO2 adsorption capacity increases and approached the highest adsorption capacity (3.55 mmol·g-1) with a 70% (w) PEHA loading. Moisture improved the CO2 adsorption performance of the adsorbents. Repeated adsorption-desorption cycling indicated that the sorbents maintained stable CO2 adsorption capacity after 4 cycles, indicating potential for regeneration of the adsorbents.