物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
6期
1313-1318
,共6页
林培宾%杨俞%陈威%高寒阳%陈小平%袁坚%上官文峰*
林培賓%楊俞%陳威%高寒暘%陳小平%袁堅%上官文峰*
림배빈%양유%진위%고한양%진소평%원견%상관문봉*
NiS-PdS/CdS%水热法%共负载%光催化%氢能
NiS-PdS/CdS%水熱法%共負載%光催化%氫能
NiS-PdS/CdS%수열법%공부재%광최화%경능
NiS-PdS/CdS%Hydrothermal method%Co-loading%Photocatalysis%Hydrogen energy
为提高太阳能转化效率,高效响应可见光的光催化剂的研究十分必要.本研究以硫化镉、氯化钯、醋酸镍和硫脲为原料,利用水热法制备了NiS-PdS/CdS复合光催化剂.通过X射线衍射(XRD)、紫外-可见光漫反射光谱(DRS)、透射电子显微镜(TEM)和光致发光(PL)光谱等手段对光催化剂进行了表征,并在乳酸牺牲剂中对光解水制氢活性进行了测试.结果表明:助催化剂 NiS 和 PdS 能较好地分布在 CdS 表面上,形成共负载的NiS-PdS/CdS 光催化剂,其可见光下的活性比 CdS 明显增强,当 NiS 和 PdS 负载量分别在1.5%和0.41%(w)时, NiS-PdS/CdS获得最好活性,最大产氢量达到6556μmol·h-1,是CdS活性的7倍,是NiS/CdS的近3倍,测得在λ=420 nm 时的表观量子效率为47.5%.助催化剂NiS 和PdS 分别起到传递光生电子和光生空穴的作用,两者共负载相比于单独负载,能使光生载流子的迁移和分离效率更高,因此提高了光催化产氢活性.
為提高太暘能轉化效率,高效響應可見光的光催化劑的研究十分必要.本研究以硫化鎘、氯化鈀、醋痠鎳和硫脲為原料,利用水熱法製備瞭NiS-PdS/CdS複閤光催化劑.通過X射線衍射(XRD)、紫外-可見光漫反射光譜(DRS)、透射電子顯微鏡(TEM)和光緻髮光(PL)光譜等手段對光催化劑進行瞭錶徵,併在乳痠犧牲劑中對光解水製氫活性進行瞭測試.結果錶明:助催化劑 NiS 和 PdS 能較好地分佈在 CdS 錶麵上,形成共負載的NiS-PdS/CdS 光催化劑,其可見光下的活性比 CdS 明顯增彊,噹 NiS 和 PdS 負載量分彆在1.5%和0.41%(w)時, NiS-PdS/CdS穫得最好活性,最大產氫量達到6556μmol·h-1,是CdS活性的7倍,是NiS/CdS的近3倍,測得在λ=420 nm 時的錶觀量子效率為47.5%.助催化劑NiS 和PdS 分彆起到傳遞光生電子和光生空穴的作用,兩者共負載相比于單獨負載,能使光生載流子的遷移和分離效率更高,因此提高瞭光催化產氫活性.
위제고태양능전화효솔,고효향응가견광적광최화제적연구십분필요.본연구이류화력、록화파、작산얼화류뇨위원료,이용수열법제비료NiS-PdS/CdS복합광최화제.통과X사선연사(XRD)、자외-가견광만반사광보(DRS)、투사전자현미경(TEM)화광치발광(PL)광보등수단대광최화제진행료표정,병재유산희생제중대광해수제경활성진행료측시.결과표명:조최화제 NiS 화 PdS 능교호지분포재 CdS 표면상,형성공부재적NiS-PdS/CdS 광최화제,기가견광하적활성비 CdS 명현증강,당 NiS 화 PdS 부재량분별재1.5%화0.41%(w)시, NiS-PdS/CdS획득최호활성,최대산경량체도6556μmol·h-1,시CdS활성적7배,시NiS/CdS적근3배,측득재λ=420 nm 시적표관양자효솔위47.5%.조최화제NiS 화PdS 분별기도전체광생전자화광생공혈적작용,량자공부재상비우단독부재,능사광생재류자적천이화분리효솔경고,인차제고료광최화산경활성.
@@@@To improve the solar energy transformation efficiency, it is necessary to study the efficiency of photocatalysts under visible light irradiation. In this study, the composite photocatalyst NiS-PdS/CdS has been developed using a hydrothermal method from the raw materials cadmium sulfide, pal adium chloride, nickel acetate and thiourea. The characteristics of NiS-PdS/CdS were studied by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. In addition, the photocatalytic activities for water splitting were tested using lactic acid as the sacrificial reagent. The results showed that NiS and PdS dispersed wel on the surface of CdS. The activity of NiS-PdS/CdS was much higher than that of CdS under visible light irradiation. When the loading amount of NiS and PdS reached 1.5% and 0.41% (w), respectively, NiS-PdS/CdS showed the highest activity. The H2 evolution rate increased up to 6556 μmol·h-1, which was six times higher than that of unloaded CdS and nearly two times higher than that of NiS/CdS. The apparent quantum yield was 47.5% (λ =420 nm). The co-catalysts NiS and PdS prompted the transfer of photogenerated electrons and holes, respectively. Compared with single-loading, co-loading the two co-catalysts could transfer and separate charge carriers more efficiently, resulting in enhancement of the activity for photocatalytic hydrogen production.