运筹与管理
運籌與管理
운주여관리
OPERATIONS RESEARCH AND MANAGEMENT SCIENCE
2013年
2期
143-149
,共7页
南国芳%周帅印%李敏强%寇纪淞
南國芳%週帥印%李敏彊%寇紀淞
남국방%주수인%리민강%구기송
信息管理与信息系统%模糊时间序列预测模型%传感器网络%分布式数据库
信息管理與信息繫統%模糊時間序列預測模型%傳感器網絡%分佈式數據庫
신식관리여신식계통%모호시간서렬예측모형%전감기망락%분포식수거고
information management and information system%fuzzy time series forecasting model%sensor net-works%distributed database
传感器网络监控系统属于大型复杂系统,由感知节点以一定的时间间隔向 sink 节点发送感知数据,以实现对应用环境的监控.由于网络本身及应用环境的影响,得到的感知数据往往存在不确定性.此外,周期性报告数据模式影响到实时监控数据的精确性.本文应用时间序列模型预测传感器数据以响应用户查询,可有效降低网络通信量.通过对无线传感器网络的数据分析,引入多属性模糊时间序列预测模型,充分考虑了无线传感器网络时间序列中存在的趋势因素,并提出了适合于传感器网络的修正预测模型.实验结果表明模糊时间序列模型可有效预测传感器网络数据,且能提高预测精度.
傳感器網絡鑑控繫統屬于大型複雜繫統,由感知節點以一定的時間間隔嚮 sink 節點髮送感知數據,以實現對應用環境的鑑控.由于網絡本身及應用環境的影響,得到的感知數據往往存在不確定性.此外,週期性報告數據模式影響到實時鑑控數據的精確性.本文應用時間序列模型預測傳感器數據以響應用戶查詢,可有效降低網絡通信量.通過對無線傳感器網絡的數據分析,引入多屬性模糊時間序列預測模型,充分攷慮瞭無線傳感器網絡時間序列中存在的趨勢因素,併提齣瞭適閤于傳感器網絡的脩正預測模型.實驗結果錶明模糊時間序列模型可有效預測傳感器網絡數據,且能提高預測精度.
전감기망락감공계통속우대형복잡계통,유감지절점이일정적시간간격향 sink 절점발송감지수거,이실현대응용배경적감공.유우망락본신급응용배경적영향,득도적감지수거왕왕존재불학정성.차외,주기성보고수거모식영향도실시감공수거적정학성.본문응용시간서렬모형예측전감기수거이향응용호사순,가유효강저망락통신량.통과대무선전감기망락적수거분석,인입다속성모호시간서렬예측모형,충분고필료무선전감기망락시간서렬중존재적추세인소,병제출료괄합우전감기망락적수정예측모형.실험결과표명모호시간서렬모형가유효예측전감기망락수거,차능제고예측정도.
The monitoring system by using sensor networks belongs to large scaled complex network , where sens-ing data are delivered at a fixed time interval in a predefined way to the sink node for user queries , thereby the application environment can be monitored .Due to the fact that the quality of service is affected by sensor net -works and the application environment , the sensor data collected is usually with uncertainty .In addition, the mechanism of periodically report may also lead to inaccurate information for real time application .In this paper, we apply time series model to forecast the sensor data , then response the user queries , which will reduce the communication overhead.By analyzing sensing data produced by sensor networks , a multi-attribute fuzzy time se-ries forecasting model is also introduced , and it takes the trend factor existing in time series into consideration . An improved model that suits the forecast of sensing data is ultimately proposed .Simulation results show that the proposed fuzzy time series forecasting model can effectively predict future sensing data of sensor networks and im -prove the predicting accuracy.