运筹与管理
運籌與管理
운주여관리
OPERATIONS RESEARCH AND MANAGEMENT SCIENCE
2013年
2期
229-234
,共6页
何芳%王小川%肖森予%李晓丽
何芳%王小川%肖森予%李曉麗
하방%왕소천%초삼여%리효려
房地产%风险识别%MIV-BP 网络%MIV算法
房地產%風險識彆%MIV-BP 網絡%MIV算法
방지산%풍험식별%MIV-BP 망락%MIV산법
real estate%risk recognition%MIV -BP Neural Network%MIV Algorithm
为了更准确更客观地识别房地产项目中的风险,为房地产项目投资决策提供科学依据和参考,有效地规避风险,本研究在 BP 神经网络(Back-Propagation Neural Network)建模的基础上,采取 MIV(Mean Impact Value)算法对 BP 神经网络模型进行变量筛选的网络优化和改良,从而形成新的优化后的 MIV-BP(Mean Impact Value Back-Propagation Neural Network )神经网络,并以此用于评价房地产项目中的风险度以及各因素在风险度中的影响作用大小;同时选取目前相关的房地产项目数据进行仿真实证分析和验证.验证实验结果表明,MIV-BP 型神经网络对于房地产项目风险度识别具有良好的适应性和准确性,实验结果客观,达到专家评价的要求,并在风险因素作用度分析上具有良好的应用价值.
為瞭更準確更客觀地識彆房地產項目中的風險,為房地產項目投資決策提供科學依據和參攷,有效地規避風險,本研究在 BP 神經網絡(Back-Propagation Neural Network)建模的基礎上,採取 MIV(Mean Impact Value)算法對 BP 神經網絡模型進行變量篩選的網絡優化和改良,從而形成新的優化後的 MIV-BP(Mean Impact Value Back-Propagation Neural Network )神經網絡,併以此用于評價房地產項目中的風險度以及各因素在風險度中的影響作用大小;同時選取目前相關的房地產項目數據進行倣真實證分析和驗證.驗證實驗結果錶明,MIV-BP 型神經網絡對于房地產項目風險度識彆具有良好的適應性和準確性,實驗結果客觀,達到專傢評價的要求,併在風險因素作用度分析上具有良好的應用價值.
위료경준학경객관지식별방지산항목중적풍험,위방지산항목투자결책제공과학의거화삼고,유효지규피풍험,본연구재 BP 신경망락(Back-Propagation Neural Network)건모적기출상,채취 MIV(Mean Impact Value)산법대 BP 신경망락모형진행변량사선적망락우화화개량,종이형성신적우화후적 MIV-BP(Mean Impact Value Back-Propagation Neural Network )신경망락,병이차용우평개방지산항목중적풍험도이급각인소재풍험도중적영향작용대소;동시선취목전상관적방지산항목수거진행방진실증분석화험증.험증실험결과표명,MIV-BP 형신경망락대우방지산항목풍험도식별구유량호적괄응성화준학성,실험결과객관,체도전가평개적요구,병재풍험인소작용도분석상구유량호적응용개치.
Real estate is a business of high risk .This paper establishes an optimized MIV -BP neural network (Mean Impact Value Back-Propagation Network)which is based on a successful Back -Propagation neural network to identify the risk of real estate projects and to analyze the influence of various factors in the risk of real estate projects, thus to provide some references about the risk recognition for the real estate projects investment deci -sions and to help the real estate companies to avoid the risk effectively .Some present data related real estate pro -jects are adopted to test the accuracy and objectivity of this model .The test results show the MIV-BP neural net-work model has an excellent compatibility and more accuracy when it is used in the risk recognition of real estate projects which can meet the experts’ evaluation requirements and has a good application value in the analysis of risk factors in real estate projects.