中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2013年
3期
779-785
,共7页
袁曼%于家康%陈代刚%于威%李华伦%曹禄华
袁曼%于傢康%陳代剛%于威%李華倫%曹祿華
원만%우가강%진대강%우위%리화륜%조록화
SiCp/ZL101基复合材料%氧化%界面%抗弯强度%导热性能
SiCp/ZL101基複閤材料%氧化%界麵%抗彎彊度%導熱性能
SiCp/ZL101기복합재료%양화%계면%항만강도%도열성능
SiCp/ZL101 matrix composites%oxidation%interface%flexural strength%thermal conductivity
以体积比为7:3的比例混合粒径分别为75和15μm两种尺寸的SiC颗粒,将其分别在1200℃高温烧结2、4、6、8和10 h后采用气压浸渗法制备SiC体积分数为70%的SiCp/ZL101基复合材料,研究预制件高温烧结后复合材料的界面,讨论氧化以及界面反应对复合材料抗弯强度和导热性能的影响,并利用实验热导率反算实际界面传热系数.结果表明:双尺寸的SiC颗粒在Al 合金基体中分布均匀;SiC预制件的氧化改变了SiC颗粒与Al合金基体之间的结合形式,从而有效提高了界面结合强度,在1200℃氧化4 h,其抗弯强度和热导率均达到最高,分别为422 MPa和195 W/(m?K).实际界面传热系数与复合材料热导率变化一致.此外,氧化钝化了SiC颗粒,其形貌的变化使得颗粒周围基体中的应力集中现象大大减少,提高了复合材料的抗弯强度,但是氧化时间过长的界面却不利于载荷的传递和基体的形变约束.
以體積比為7:3的比例混閤粒徑分彆為75和15μm兩種呎吋的SiC顆粒,將其分彆在1200℃高溫燒結2、4、6、8和10 h後採用氣壓浸滲法製備SiC體積分數為70%的SiCp/ZL101基複閤材料,研究預製件高溫燒結後複閤材料的界麵,討論氧化以及界麵反應對複閤材料抗彎彊度和導熱性能的影響,併利用實驗熱導率反算實際界麵傳熱繫數.結果錶明:雙呎吋的SiC顆粒在Al 閤金基體中分佈均勻;SiC預製件的氧化改變瞭SiC顆粒與Al閤金基體之間的結閤形式,從而有效提高瞭界麵結閤彊度,在1200℃氧化4 h,其抗彎彊度和熱導率均達到最高,分彆為422 MPa和195 W/(m?K).實際界麵傳熱繫數與複閤材料熱導率變化一緻.此外,氧化鈍化瞭SiC顆粒,其形貌的變化使得顆粒週圍基體中的應力集中現象大大減少,提高瞭複閤材料的抗彎彊度,但是氧化時間過長的界麵卻不利于載荷的傳遞和基體的形變約束.
이체적비위7:3적비례혼합립경분별위75화15μm량충척촌적SiC과립,장기분별재1200℃고온소결2、4、6、8화10 h후채용기압침삼법제비SiC체적분수위70%적SiCp/ZL101기복합재료,연구예제건고온소결후복합재료적계면,토론양화이급계면반응대복합재료항만강도화도열성능적영향,병이용실험열도솔반산실제계면전열계수.결과표명:쌍척촌적SiC과립재Al 합금기체중분포균균;SiC예제건적양화개변료SiC과립여Al합금기체지간적결합형식,종이유효제고료계면결합강도,재1200℃양화4 h,기항만강도화열도솔균체도최고,분별위422 MPa화195 W/(m?K).실제계면전열계수여복합재료열도솔변화일치.차외,양화둔화료SiC과립,기형모적변화사득과립주위기체중적응력집중현상대대감소,제고료복합재료적항만강도,단시양화시간과장적계면각불리우재하적전체화기체적형변약속.
@@@@The 75 and 15μm SiC particles were mixed at a 7:3 volume ratio for SiC preforms, which were then oxidized at 1 200℃for 2、4、6、8 and 10 h, respectively. The pressure infiltration was carried out to fabricate SiCp/ZL101 matrix composites with SiC volume fraction of 70%. The interfaces with different holding times were investigated, and the effects of oxidation and interfacial reaction on flexural strength and thermal conductivity were discussed. The actual interfacial thermal conductance was back-calculated by experimental thermal conductivity. The results show that the distribution of dual-sized particles in Al alloy matrix is uniform. The bonding form changed by oxidation is considered to improve the bonding strength between SiC and Al. When being oxidized at 1 200 ℃ for 4 h, the flexural strength and thermal conductivity reach the maximum, which are 422 MPa and 195 W/(m?K), respectively. The interfacial thermal conductance back-calculated shows the same variation trend with the thermal conductivity of SiCp/ZL101 matrix composites. Besides, oxidation decreases the stress concentration in Al matrix around SiC particles, which improves the flexural strength of SiCp/ZL101 matrix composites. But if the oxidizing time is too long, the interface is detrimental to the transfer of loads and control of matrix deformation.