纯粹数学与应用数学
純粹數學與應用數學
순수수학여응용수학
PURE AND APPLIED MATHEMATICS
2012年
6期
809-818
,共10页
滞后脉冲微分方程%局部有界变差%有界变差解%唯一性
滯後脈遲微分方程%跼部有界變差%有界變差解%唯一性
체후맥충미분방정%국부유계변차%유계변차해%유일성
impulsive retarded differential equations%locally bounded variation solution%bounded variational solutions%uniqueness
借助 Henstock-Kurzweil 积分,在建立了一类滞后脉冲微分方程有界变差解存在性定理的基础上,建立其解的唯一性定理并给出证明.这个结果将唯一性定理从Lebesgue积分意义下推广到Henstock-Kurzweil积分意义下.
藉助 Henstock-Kurzweil 積分,在建立瞭一類滯後脈遲微分方程有界變差解存在性定理的基礎上,建立其解的唯一性定理併給齣證明.這箇結果將唯一性定理從Lebesgue積分意義下推廣到Henstock-Kurzweil積分意義下.
차조 Henstock-Kurzweil 적분,재건립료일류체후맥충미분방정유계변차해존재성정리적기출상,건립기해적유일성정리병급출증명.저개결과장유일성정리종Lebesgue적분의의하추엄도Henstock-Kurzweil적분의의하.
In this paper, based on the existence theorem of bounded variation solution for impulsive retarded functional differential equations, using the Henstock-Kurzweil integral we establish the uniqueness theorem of bounded variation solution for these equations. This result generalizes theorem concerning uniqueness in Lebesgue integral setting to a Henstock-Kurzweil integral setting.