磁性材料及器件
磁性材料及器件
자성재료급기건
JOURNAL OF MAGNETIC MATERIALS AND DEVICES
2013年
1期
73-78
,共6页
饱和磁化强度Ms%饱和磁感应强度Bs%测量磁场%饱和磁化场%YIG%石榴石%Li铁氧体%剩磁比
飽和磁化彊度Ms%飽和磁感應彊度Bs%測量磁場%飽和磁化場%YIG%石榴石%Li鐵氧體%剩磁比
포화자화강도Ms%포화자감응강도Bs%측량자장%포화자화장%YIG%석류석%Li철양체%잉자비
saturation magnetization Ms%saturation magnetic flux density Bs%measuring magnetic field%saturation magnetizing field%YIG%garnet%Li ferrite%remanence ratio
微波铁氧体的饱和磁化强度 Ms是器件设计者选择材料的重要参数之一,但是一些文章常将 Bm、Bs与Ms混为一谈,本文旨在讨论这一问题.软磁铁氧体材料因为磁晶各向异性常数K1非常低,饱和磁化场Hs低,其 Bs通常由指定测量磁场 Hm下测得的 Bm(Hm?Hs)来确定.为了说明微波铁氧体与软磁铁氧体的不同,给出了小线宽石榴石材料的磁化曲线和微波铁氧体材料的矫顽力,由此推知微波铁氧体材料的饱和磁化场Hs远高于磁滞回线的测量磁场Hm(5Hc~10Hc),相差2~3个数量级.由Li铁氧体的Bm/m0Ms (?Mm/Ms)£63%~81%和Mn:YIG的Bm/m0Ms£81%~86%,说明在Hm下材料磁畴中的磁矩中有14%~37%不在磁场方向.因此对微波铁氧体来说,不能像在软磁铁氧体中那样有Bm?Bs?m0Ms的关系.所以为保证材料被磁化饱和,Ms的测量应该按照IEC60556标准在>300kA/m磁场下进行.最后讨论了经常将剩磁比R=Br/Bm误成Br/Bs问题.
微波鐵氧體的飽和磁化彊度 Ms是器件設計者選擇材料的重要參數之一,但是一些文章常將 Bm、Bs與Ms混為一談,本文旨在討論這一問題.軟磁鐵氧體材料因為磁晶各嚮異性常數K1非常低,飽和磁化場Hs低,其 Bs通常由指定測量磁場 Hm下測得的 Bm(Hm?Hs)來確定.為瞭說明微波鐵氧體與軟磁鐵氧體的不同,給齣瞭小線寬石榴石材料的磁化麯線和微波鐵氧體材料的矯頑力,由此推知微波鐵氧體材料的飽和磁化場Hs遠高于磁滯迴線的測量磁場Hm(5Hc~10Hc),相差2~3箇數量級.由Li鐵氧體的Bm/m0Ms (?Mm/Ms)£63%~81%和Mn:YIG的Bm/m0Ms£81%~86%,說明在Hm下材料磁疇中的磁矩中有14%~37%不在磁場方嚮.因此對微波鐵氧體來說,不能像在軟磁鐵氧體中那樣有Bm?Bs?m0Ms的關繫.所以為保證材料被磁化飽和,Ms的測量應該按照IEC60556標準在>300kA/m磁場下進行.最後討論瞭經常將剩磁比R=Br/Bm誤成Br/Bs問題.
미파철양체적포화자화강도 Ms시기건설계자선택재료적중요삼수지일,단시일사문장상장 Bm、Bs여Ms혼위일담,본문지재토론저일문제.연자철양체재료인위자정각향이성상수K1비상저,포화자화장Hs저,기 Bs통상유지정측량자장 Hm하측득적 Bm(Hm?Hs)래학정.위료설명미파철양체여연자철양체적불동,급출료소선관석류석재료적자화곡선화미파철양체재료적교완력,유차추지미파철양체재료적포화자화장Hs원고우자체회선적측량자장Hm(5Hc~10Hc),상차2~3개수량급.유Li철양체적Bm/m0Ms (?Mm/Ms)£63%~81%화Mn:YIG적Bm/m0Ms£81%~86%,설명재Hm하재료자주중적자구중유14%~37%불재자장방향.인차대미파철양체래설,불능상재연자철양체중나양유Bm?Bs?m0Ms적관계.소이위보증재료피자화포화,Ms적측량응해안조IEC60556표준재>300kA/m자장하진행.최후토론료경상장잉자비R=Br/Bm오성Br/Bs문제.
To device designers, the saturation magnetization Ms is one of important parameters of microwave ferrite materials. However, there were some confuses on the maximum magnetic flux density Bm, the saturation flux Bs and Ms in some papers, so the purpose of this article is to discuss this problem. To interpret the difference between soft ferrite and microwave ferrite, the magnetizing curve of the garnet with narrow linewidth and coercivities of commercial microwave materials are given, which shows that the saturation magnetizing field Hs for microwave ferrites is larger in order of 2 to 3 then the measuring field Hm (=5Hc~10Hc) to the hysteresis loop measurement. By means of the fact that the ratio Bm/m0Ms (?Mm/Ms)£63%~81%for Li ferrites and the ratio Bm/m0Ms (?Mm/Ms)£81%~86%for the Mn:YIG, it is revealed that a percentage of 14% ~37% of magnetizations in domains of the materials is not orientated by the measuring field Hm and it is indicated that the measured Bm can not be expressed as Bm?Bs?m0Ms for microwave ferrites like as that in soft ferrites, and the Ms value of microwave ferrites should be determined at the measuring field H>300kA/m to get the saturation state according to the IEC60556 standard. The problem of mistaking the remanence ratio R as Br/Bs is also discussed at the last.