电讯技术
電訊技術
전신기술
TELECOMMUNICATIONS ENGINEERING
2013年
3期
357-362
,共6页
韦保林**%岳宏卫%周茜%韦雪明%徐卫林%段吉海
韋保林**%嶽宏衛%週茜%韋雪明%徐衛林%段吉海
위보림**%악굉위%주천%위설명%서위림%단길해
可植入式设备%超宽带%人体电磁模型%电磁辐射%有限积分法
可植入式設備%超寬帶%人體電磁模型%電磁輻射%有限積分法
가식입식설비%초관대%인체전자모형%전자복사%유한적분법
implantable devices%ultra-wideband(UWB)%electromagnetic model of human body%electromag-netic radioactive%finite integration technique(FIT)
为考察超宽带(UWB)实现植入式生物医学电子设备无线通信的可行性及信道传播特性,基于男性活体C T及M R I切片图像,构建了一个频率范围在1~10.8 G H z的高分辨率三维人体电磁模型,考虑了85种不同人体组织或器官的电磁特性参数;将模型嵌入基于有限积分法(FIT)的三维电磁仿真软件进行电磁计算,考察电磁波在人体内的路径损耗及比吸收率特性.实验结果表明:该模型能较好地描绘真实人体的电磁特性,信号在人体内的衰减随频率的升高及植入深度的加深而加重;在植入深度达160 mm时,3.5 GHz信号的路径损耗为75 dB;参考功率为27 dBm时,人体对3.5 GHz信号的比吸收率在安全值范围内;证实了采用UWB频段内的3.5 GHz实现植入式生物医学电子无线通信的可行性和安全性.
為攷察超寬帶(UWB)實現植入式生物醫學電子設備無線通信的可行性及信道傳播特性,基于男性活體C T及M R I切片圖像,構建瞭一箇頻率範圍在1~10.8 G H z的高分辨率三維人體電磁模型,攷慮瞭85種不同人體組織或器官的電磁特性參數;將模型嵌入基于有限積分法(FIT)的三維電磁倣真軟件進行電磁計算,攷察電磁波在人體內的路徑損耗及比吸收率特性.實驗結果錶明:該模型能較好地描繪真實人體的電磁特性,信號在人體內的衰減隨頻率的升高及植入深度的加深而加重;在植入深度達160 mm時,3.5 GHz信號的路徑損耗為75 dB;參攷功率為27 dBm時,人體對3.5 GHz信號的比吸收率在安全值範圍內;證實瞭採用UWB頻段內的3.5 GHz實現植入式生物醫學電子無線通信的可行性和安全性.
위고찰초관대(UWB)실현식입식생물의학전자설비무선통신적가행성급신도전파특성,기우남성활체C T급M R I절편도상,구건료일개빈솔범위재1~10.8 G H z적고분변솔삼유인체전자모형,고필료85충불동인체조직혹기관적전자특성삼수;장모형감입기우유한적분법(FIT)적삼유전자방진연건진행전자계산,고찰전자파재인체내적로경손모급비흡수솔특성.실험결과표명:해모형능교호지묘회진실인체적전자특성,신호재인체내적쇠감수빈솔적승고급식입심도적가심이가중;재식입심도체160 mm시,3.5 GHz신호적로경손모위75 dB;삼고공솔위27 dBm시,인체대3.5 GHz신호적비흡수솔재안전치범위내;증실료채용UWB빈단내적3.5 GHz실현식입식생물의학전자무선통신적가행성화안전성.
@@@@To investigate the feasibility and channel propagation characterization of Ultra-wideband(UWB)wire-less communication for biomedical implantable electronic devices,a high-resolution 3D electromagnetic model of human body based on computed tomography(CT)and magnetic resonance imaging(MRI)segmented images of living human males is presented,the frequency range is 1~10.8 GHz,and the electromagnetic characters for 85 different kind of human tissues or organs are considered. The model is embedded in 3D electromagnetic(EM) simulator based on finite integration technique(FIT)for electromagnetic computation to investigate the path loss and specific absorption rate(SAR)in body. Experiment result shows that the model can well characterize the electromagnetic characters of real human body,the signal loss is aggravating with the higher frequency and deep-er implant depth;the path loss for 3.5 GHz is 75 dB under an implant depth of 160 mm and,with a reference power of 27 dBm,the SAR in body for 3.5 GHz is under the safety region. These results demonstrate the feasi-bility and security of applying 3.5 GHz on UWB for wireless communication in biomedical implantable devices.