电子科技大学学报
電子科技大學學報
전자과기대학학보
JOURNAL OF UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA
2013年
1期
154-160
,共7页
冷启动问题%交叉推荐%电子商务%跨电商行为%推荐系统
冷啟動問題%交扠推薦%電子商務%跨電商行為%推薦繫統
랭계동문제%교차추천%전자상무%과전상행위%추천계통
cold-start problem%crossing recommendation%E-commerce%multi-B2C behaviors%recommender systems
利用百分点科技推荐引擎提供的原始数据,分析了用户跨电商的行为,提出了一种可在多个电商之间进行交叉推荐的算法.结果证明,该算法不仅在精确性上较完全冷启动的随机推荐有巨大的提高,而且所推荐的商品可以保持相当的多样性与新颖性.分析显示有约5%~10%的点击、收藏和购买行为发生在有交叉行为的用户身上,这些用户的活跃性明显强于非交叉用户.这些结果暗示交叉用户可能是网上购物的重度用户.该文展现了全新的研究思路,研讨了全新的分析对象,其思路和结果对于电子商务研究有重要价值.
利用百分點科技推薦引擎提供的原始數據,分析瞭用戶跨電商的行為,提齣瞭一種可在多箇電商之間進行交扠推薦的算法.結果證明,該算法不僅在精確性上較完全冷啟動的隨機推薦有巨大的提高,而且所推薦的商品可以保持相噹的多樣性與新穎性.分析顯示有約5%~10%的點擊、收藏和購買行為髮生在有交扠行為的用戶身上,這些用戶的活躍性明顯彊于非交扠用戶.這些結果暗示交扠用戶可能是網上購物的重度用戶.該文展現瞭全新的研究思路,研討瞭全新的分析對象,其思路和結果對于電子商務研究有重要價值.
이용백분점과기추천인경제공적원시수거,분석료용호과전상적행위,제출료일충가재다개전상지간진행교차추천적산법.결과증명,해산법불부재정학성상교완전랭계동적수궤추천유거대적제고,이차소추천적상품가이보지상당적다양성여신영성.분석현시유약5%~10%적점격、수장화구매행위발생재유교차행위적용호신상,저사용호적활약성명현강우비교차용호.저사결과암시교차용호가능시망상구물적중도용호.해문전현료전신적연구사로,연토료전신적분석대상,기사로화결과대우전자상무연구유중요개치.
Personalized recommendation has now been widely used in E-commerce, but there are still some problems to be solved such as cold-start problem, data sparsity, diversity-accuracy dilemma and so on. Existing literatures have focused on single data set, lacking a systematic understanding about the accessing behavior involving multiple web sites. Thanks to the real data, provided by Baifendian Information Technology recommendation engine, we analyze users' behavior on multi-B2Cs (business-to-customers) and propose a crossing recommendation algorithm which is able to recommend items of a B2C site to users according to the records of users in other B2C web sites. This algorithm largely improves accuracy compared with purely random recommendation under completely cold-start environment and can still keep high diversity and novelty.