电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2013年
1期
185-190
,共6页
无线通信%半盲均衡%共轭梯度算法%软决策算法%方环算法
無線通信%半盲均衡%共軛梯度算法%軟決策算法%方環算法
무선통신%반맹균형%공액제도산법%연결책산법%방배산법
Wireless communication%Semi-blind equalization%Conjugate gradient method%Soft Decision-Directed (SDD) scheme%Square Contour Algorithm (SCA)
该文针对传输正交幅度调制(QAM)信号的多输入多输出(MIMO)系统的均衡问题,结合方环算法(SCA)的简单性和软决策(SDD)算法的精确性,提出了一种既比较精确又简单的算法(SCA+SDD).在优化该算法的代价函数过程中,首先用很少的训练序列(等于接收天线数)得到均衡器权向量的一个粗略估计,然后提出利用共轭梯度法进行迭代优化该代价函数的方法,该算法具有近似的二次收敛性,与传统梯度类算法相比较,该方法有非常快的收敛速度和较少的计算量.最后通过误码率(BER)和收敛速度分析该算法的可靠性和有效性,并且通过计算机仿真证明了该算法的良好性能.
該文針對傳輸正交幅度調製(QAM)信號的多輸入多輸齣(MIMO)繫統的均衡問題,結閤方環算法(SCA)的簡單性和軟決策(SDD)算法的精確性,提齣瞭一種既比較精確又簡單的算法(SCA+SDD).在優化該算法的代價函數過程中,首先用很少的訓練序列(等于接收天線數)得到均衡器權嚮量的一箇粗略估計,然後提齣利用共軛梯度法進行迭代優化該代價函數的方法,該算法具有近似的二次收斂性,與傳統梯度類算法相比較,該方法有非常快的收斂速度和較少的計算量.最後通過誤碼率(BER)和收斂速度分析該算法的可靠性和有效性,併且通過計算機倣真證明瞭該算法的良好性能.
해문침대전수정교폭도조제(QAM)신호적다수입다수출(MIMO)계통적균형문제,결합방배산법(SCA)적간단성화연결책(SDD)산법적정학성,제출료일충기비교정학우간단적산법(SCA+SDD).재우화해산법적대개함수과정중,수선용흔소적훈련서렬(등우접수천선수)득도균형기권향량적일개조략고계,연후제출이용공액제도법진행질대우화해대개함수적방법,해산법구유근사적이차수렴성,여전통제도류산법상비교,해방법유비상쾌적수렴속도화교소적계산량.최후통과오마솔(BER)화수렴속도분석해산법적가고성화유효성,병차통과계산궤방진증명료해산법적량호성능.
This paper focuses on the semi-blind equalization for Multiple-Input Multiple-Output (MIMO) systems with Quadrature Amplitude Modulation (QAM) signal. Combining the advantages of simplicity of Square Contour Algorithm (SCA) and accuracy of Soft Decision-Directed (SDD) scheme together, the SCA added SDD (SCA+ SDD) method is proposed, which has the good performances of both simplicity and accuracy. In the optimization procedure, a minimum number (equal to the number of receiving antennas) of training symbols are firstly utilized to derive the rough estimate of the spatial equalizers’ weight vectors, and then the conjugate gradient algorithm is proposed to optimize the cost function. The new scheme possesses the performance of approximate quadratic convergent. Compared with traditional gradient-type algorithms, conjugate gradient algorithm has a faster convergent speed and less computational quantity complexity. Finally, the method’s reliability and validity are evaluated by Bite Error Rate (BER) and convergent speed respectively. Computer simulation confirms the good performances of the algorithm.