电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2013年
3期
127-132
,共6页
黄剑华%丁建睿*%刘家锋%张英涛
黃劍華%丁建睿*%劉傢鋒%張英濤
황검화%정건예*%류가봉%장영도
图像识别%多示例学习%Citation-kNN%样本分布%局部加权
圖像識彆%多示例學習%Citation-kNN%樣本分佈%跼部加權
도상식별%다시례학습%Citation-kNN%양본분포%국부가권
Image recognition%Multi-Instance Learning (MIL)%Citation-kNN%Distribution of samples%Locally weighted
Citation-kNN算法对传统的kNN算法进行了改进,使其可以应用于多示例学习问题,但其0-1决策方式具有一定的局限性,没有充分考虑样本的分布情况.为解决该问题,该文提出局部加权的 Citation-kNN 算法,综合考虑样本的分布情况,提出基于样本距离加权、基于样本离散度加权的方法,并对各种组合情况进行了实验.在标准数据集MUSK和乳腺超声图像数据库上的实验结果表明,该文提出的方法与Citation-kNN相比,性能有明显提高,并具有良好的适应性.
Citation-kNN算法對傳統的kNN算法進行瞭改進,使其可以應用于多示例學習問題,但其0-1決策方式具有一定的跼限性,沒有充分攷慮樣本的分佈情況.為解決該問題,該文提齣跼部加權的 Citation-kNN 算法,綜閤攷慮樣本的分佈情況,提齣基于樣本距離加權、基于樣本離散度加權的方法,併對各種組閤情況進行瞭實驗.在標準數據集MUSK和乳腺超聲圖像數據庫上的實驗結果錶明,該文提齣的方法與Citation-kNN相比,性能有明顯提高,併具有良好的適應性.
Citation-kNN산법대전통적kNN산법진행료개진,사기가이응용우다시례학습문제,단기0-1결책방식구유일정적국한성,몰유충분고필양본적분포정황.위해결해문제,해문제출국부가권적 Citation-kNN 산법,종합고필양본적분포정황,제출기우양본거리가권、기우양본리산도가권적방법,병대각충조합정황진행료실험.재표준수거집MUSK화유선초성도상수거고상적실험결과표명,해문제출적방법여Citation-kNN상비,성능유명현제고,병구유량호적괄응성.
The Citation-kNN algorithm improves traditional kNN algorithm and can be applied to solve multi-instance learning issue. But its 0-1 decision strategy has some limitations. To overcome this issue, the locally-weighted Citation-kNN algorithm is presented in this paper. Considering distribution of the samples, the distance-based weighted method and the scatter-based weighted method are proposed. And their combinations are discussed. The method is applied to the standard database MUSK and the breast ultrasound image database. The results confirm that the method has higher accuracy comparing with that by using Citation-kNN algorithm.