高校化学工程学报
高校化學工程學報
고교화학공정학보
JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES
2013年
1期
125-130
,共6页
龙云飞%谭芳香%杨克迪%葛利%吕小艳%文衍宣
龍雲飛%譚芳香%楊剋迪%葛利%呂小豔%文衍宣
룡운비%담방향%양극적%갈리%려소염%문연선
锂离子电池%负极材料%LiFePO4/C%低温碳热还原%响应面法
鋰離子電池%負極材料%LiFePO4/C%低溫碳熱還原%響應麵法
리리자전지%부겁재료%LiFePO4/C%저온탄열환원%향응면법
lithium ion battery%cathode materials%LiFePO4/C%low-temperature carbothermal reduction%response surface methodology
用响应面法优化了低温碳热还原合成LiFePO4/C的工艺,用中心组合设计研究了蔗糖用量、焙烧温度、焙烧时间和低温反应温度四因素对放电比容量的影响.结果表明,放电比容量与四因素关系符合二次模型,焙烧温度和蔗糖量以及两者的交互作用对放电比容量影响较为显著,各个因素的二次方影响高度显著.由模型得出的最优操作条件为:焙烧温度718℃;焙烧时间10.88 h;蔗糖量0.866 g?g?1 LiFePO4;热处理温度105℃.该条件下LiFePO4/C的实际放电比容量为140.6 mA?h?g?1,与模型预测值142.03 mA?h?g?1无显著差异.
用響應麵法優化瞭低溫碳熱還原閤成LiFePO4/C的工藝,用中心組閤設計研究瞭蔗糖用量、焙燒溫度、焙燒時間和低溫反應溫度四因素對放電比容量的影響.結果錶明,放電比容量與四因素關繫符閤二次模型,焙燒溫度和蔗糖量以及兩者的交互作用對放電比容量影響較為顯著,各箇因素的二次方影響高度顯著.由模型得齣的最優操作條件為:焙燒溫度718℃;焙燒時間10.88 h;蔗糖量0.866 g?g?1 LiFePO4;熱處理溫度105℃.該條件下LiFePO4/C的實際放電比容量為140.6 mA?h?g?1,與模型預測值142.03 mA?h?g?1無顯著差異.
용향응면법우화료저온탄열환원합성LiFePO4/C적공예,용중심조합설계연구료자당용량、배소온도、배소시간화저온반응온도사인소대방전비용량적영향.결과표명,방전비용량여사인소관계부합이차모형,배소온도화자당량이급량자적교호작용대방전비용량영향교위현저,각개인소적이차방영향고도현저.유모형득출적최우조작조건위:배소온도718℃;배소시간10.88 h;자당량0.866 g?g?1 LiFePO4;열처리온도105℃.해조건하LiFePO4/C적실제방전비용량위140.6 mA?h?g?1,여모형예측치142.03 mA?h?g?1무현저차이.
A low-temperature carbothermal reduction method was used to prepare the LiFePO4/C composites, and the response surface methodology was used to optimize the preparation process parameters. The sucrose amount, sintering temperature, sintering time and heating temperature were selected as four independent variables. The experimental data were collected by the central composite rotatable design (CCD), and the effects of the above four independent variables on the discharge capacity of the prepared LiFePO4/C were studied. A quadratic formula was obtained by response surface analysis between the discharge capacity of the prepared LiFePO4/C and the four parameters. The discharge capacity of the prepared LiFePO4/C depends more on the sintering temperature and sucrose amount than the other variables. The quadratic term of the four parameters, the sintering temperature, the sucrose amount and the interaction between the later two parameters have significant effects on the discharge capacity of the prepared LiFePO4/C. The obtained model reveals that the optimized LiFePO4/C preparation parameters are as follows:sintering temperature of 718℃, sucrose amount of 0.866 g?g?1 LiFePO4, 10.88 h sintering time and heating temperature of 105℃. Under these conditions, the actual discharge capacity of the prepared LiFePO4/C is 140.6mA?h?g?1, and this value does not significantly different from that predicted by the model (142.03 mA?h?g?1).