高校化学工程学报
高校化學工程學報
고교화학공정학보
JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES
2013年
1期
164-169
,共6页
王金辉%张继伟%王之阳%王光辉%张国亮%王家德
王金輝%張繼偉%王之暘%王光輝%張國亮%王傢德
왕금휘%장계위%왕지양%왕광휘%장국량%왕가덕
搅拌式浆态光催化反应器%偶氮染料%二氧化钛%初始反应速率%速度梯度
攪拌式漿態光催化反應器%偶氮染料%二氧化鈦%初始反應速率%速度梯度
교반식장태광최화반응기%우담염료%이양화태%초시반응속솔%속도제도
stirred slurry photocatalytic reactor%azo dye%titanium dioxide%initial react rate%velocity gradient
构建了体积为5 L的搅拌式浆态光催化反应器,以偶氮染料活性艳红X-3B为目标污染物,进行光催化降解特性研究.结合对X-3B在小规模反应器中悬浮TiO2表面的吸附行为研究,考察了TiO2投加量、搅拌速率和曝气量等对光催化效果的影响,分析了光催化过程的降解动力学,并从传质的角度对搅拌强度和初始反应速率进行了关联.实验结果表明,在搅拌式浆态光催化反应器中,Langmuir模型和Freundlich模型均能较好地描述TiO2对X-3B的吸附行为;在催化剂最佳浓度0.5 g·L?1的条件下,初始反应速率r0随搅拌雷诺数Re的增加呈现先增大后稳定的趋势,进一步增加空气曝气量可以显著提高初始反应速率.根据相关理论推导得出在该反应器光催化降解X-3B时,氧的传质是影响初始反应速率r0的关键因素.
構建瞭體積為5 L的攪拌式漿態光催化反應器,以偶氮染料活性豔紅X-3B為目標汙染物,進行光催化降解特性研究.結閤對X-3B在小規模反應器中懸浮TiO2錶麵的吸附行為研究,攷察瞭TiO2投加量、攪拌速率和曝氣量等對光催化效果的影響,分析瞭光催化過程的降解動力學,併從傳質的角度對攪拌彊度和初始反應速率進行瞭關聯.實驗結果錶明,在攪拌式漿態光催化反應器中,Langmuir模型和Freundlich模型均能較好地描述TiO2對X-3B的吸附行為;在催化劑最佳濃度0.5 g·L?1的條件下,初始反應速率r0隨攪拌雷諾數Re的增加呈現先增大後穩定的趨勢,進一步增加空氣曝氣量可以顯著提高初始反應速率.根據相關理論推導得齣在該反應器光催化降解X-3B時,氧的傳質是影響初始反應速率r0的關鍵因素.
구건료체적위5 L적교반식장태광최화반응기,이우담염료활성염홍X-3B위목표오염물,진행광최화강해특성연구.결합대X-3B재소규모반응기중현부TiO2표면적흡부행위연구,고찰료TiO2투가량、교반속솔화폭기량등대광최화효과적영향,분석료광최화과정적강해동역학,병종전질적각도대교반강도화초시반응속솔진행료관련.실험결과표명,재교반식장태광최화반응기중,Langmuir모형화Freundlich모형균능교호지묘술TiO2대X-3B적흡부행위;재최화제최가농도0.5 g·L?1적조건하,초시반응속솔r0수교반뢰낙수Re적증가정현선증대후은정적추세,진일보증가공기폭기량가이현저제고초시반응속솔.근거상관이론추도득출재해반응기광최화강해X-3B시,양적전질시영향초시반응속솔r0적관건인소.
A stirred slurry photocatalytic reactor with effective volume of 5 L was constructed and applied to study the pohotocatalytic degradation of a typical azo dye, reactive brilliant red X-3B. The adsorption behavior of X-3B on the TiO2 surface and some operation factors, such as TiO2 dosage, stirring speed and air agitation, which impact photocatalytic degradation rate of X-3B, were explored in detail. By analyzing the degradation kinetics of X-3B, the correlation between stirring intensity and initial reaction rate was set up. The experimental results show that the adsorption behavior of X-3B on the TiO2 fits very well with the Langmuir and Freundlich models. At the optimum catalyst loading of 0.5 g?L?1, the initial reaction rate increases with increasing stirred Reynolds number at first and then goes up to a stable value. The initial react rate can be improved significantly by further appropriately increasing aeration. It can be deduced that the transfer of oxygen in the reactor is a prominent factor affecting the initial react rate.