海军航空工程学院学报
海軍航空工程學院學報
해군항공공정학원학보
JOURNAL OF NAVAL AERONAUTICAL ENGINEERING INSTITUTE
2012年
6期
645-650
,共6页
张继军%张金春%马登武%范庚
張繼軍%張金春%馬登武%範庚
장계군%장금춘%마등무%범경
故障预测%隐马尔科夫模型%最小二乘支持向量机%遗传算法%状态预测
故障預測%隱馬爾科伕模型%最小二乘支持嚮量機%遺傳算法%狀態預測
고장예측%은마이과부모형%최소이승지지향량궤%유전산법%상태예측
fault forecast%hidden Markov model (HMM)%LS-SVM%genetic algorithm%state prediction
针对传统故障预测方法不能直接预测设备状态的不足,提出了将改进隐马尔科夫模型(HMM)和最小二乘支持向量机(LS-SVM)相结合的机载设备故障预测方法.首先,采用多智能体遗传算法对 HMM 参数进行训练优化,克服了 B-W 算法易陷入局部最优解的缺陷;其次,分别研究设计了设备是否具有使用阶段状态退化过程数据2种情况下的故障预测算法流程;最后,以飞机发动机温控放大器为应用对象进行仿真计算.结果表明,该算法不仅预测精度高,而且预测结果直接与设备状态相关,易于理解分析.
針對傳統故障預測方法不能直接預測設備狀態的不足,提齣瞭將改進隱馬爾科伕模型(HMM)和最小二乘支持嚮量機(LS-SVM)相結閤的機載設備故障預測方法.首先,採用多智能體遺傳算法對 HMM 參數進行訓練優化,剋服瞭 B-W 算法易陷入跼部最優解的缺陷;其次,分彆研究設計瞭設備是否具有使用階段狀態退化過程數據2種情況下的故障預測算法流程;最後,以飛機髮動機溫控放大器為應用對象進行倣真計算.結果錶明,該算法不僅預測精度高,而且預測結果直接與設備狀態相關,易于理解分析.
침대전통고장예측방법불능직접예측설비상태적불족,제출료장개진은마이과부모형(HMM)화최소이승지지향량궤(LS-SVM)상결합적궤재설비고장예측방법.수선,채용다지능체유전산법대 HMM 삼수진행훈련우화,극복료 B-W 산법역함입국부최우해적결함;기차,분별연구설계료설비시부구유사용계단상태퇴화과정수거2충정황하적고장예측산법류정;최후,이비궤발동궤온공방대기위응용대상진행방진계산.결과표명,해산법불부예측정도고,이차예측결과직접여설비상태상관,역우리해분석.
For the deficiency that the traditional fault forecast methods cannot predict the states of equipments, a fault forecast method based on improved hidden Markov model (HMM) and least square support vector machine (LS-SVM) was presented. Multi-agent genetic algorithm (MAGA) was used to estimate parameters of HMM for overcoming the problem that Baum-Welch algorithm fall into local optimal solution easily. Two fault prognostic algorithms were designed separately according to the situations whether the equipment had the state degradation process data of using stage. The simulation results showed that these two algorithms were of high forecast precision, and the forecast results directly related to the states of equipment were easy to be understood and analyzed.