红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2013年
2期
317-323
,共7页
吕事桂%杨立%范春利%王为清
呂事桂%楊立%範春利%王為清
려사계%양립%범춘리%왕위청
传热反问题%缺陷辨识%混沌算法%Levenberg-Marquardt法%红外检测%全局最优
傳熱反問題%缺陷辨識%混沌算法%Levenberg-Marquardt法%紅外檢測%全跼最優
전열반문제%결함변식%혼돈산법%Levenberg-Marquardt법%홍외검측%전국최우
inverse heat transfer%defect identification%chaos algorithm%Levenberg-Marquardt method%infrared inspection%global optimum
针对缺陷定量辨识的非线性、不适定性提出了采用混沌-LM(Levenberg-Marquardt)混合解法结合单面红外检测技术对缺陷进行定量辨识的新算法,并提出了相对敏感系数分析缺陷可检测性的新概念.通过相对敏感系数分析发现,缺陷尺寸、位置的不同描述参数的可检测性并不相同,而且采用检测面达到最大温差时刻点的瞬态检测比稳态检测更具优越性.文中采用数值实验对瞬态和稳态检测均进行了检验,实验结果与相对敏感系数分析结论一致.此外,数值实验还证明了混沌-LM混合解法的有效性,表明了辨识结果的稳定性和全局最优性.
針對缺陷定量辨識的非線性、不適定性提齣瞭採用混沌-LM(Levenberg-Marquardt)混閤解法結閤單麵紅外檢測技術對缺陷進行定量辨識的新算法,併提齣瞭相對敏感繫數分析缺陷可檢測性的新概唸.通過相對敏感繫數分析髮現,缺陷呎吋、位置的不同描述參數的可檢測性併不相同,而且採用檢測麵達到最大溫差時刻點的瞬態檢測比穩態檢測更具優越性.文中採用數值實驗對瞬態和穩態檢測均進行瞭檢驗,實驗結果與相對敏感繫數分析結論一緻.此外,數值實驗還證明瞭混沌-LM混閤解法的有效性,錶明瞭辨識結果的穩定性和全跼最優性.
침대결함정량변식적비선성、불괄정성제출료채용혼돈-LM(Levenberg-Marquardt)혼합해법결합단면홍외검측기술대결함진행정량변식적신산법,병제출료상대민감계수분석결함가검측성적신개념.통과상대민감계수분석발현,결함척촌、위치적불동묘술삼수적가검측성병불상동,이차채용검측면체도최대온차시각점적순태검측비은태검측경구우월성.문중채용수치실험대순태화은태검측균진행료검험,실험결과여상대민감계수분석결론일치.차외,수치실험환증명료혼돈-LM혼합해법적유효성,표명료변식결과적은정성화전국최우성.
In order to overcome the difficulty of nonlinearity and ill-posedness of the defect quantitative identification with the single-side infrared inspection, a new algorithm(Chaos-LM hybrid algorithm),which combined the chaos algorithm with the Levenberg-Marquardt method,was introduced in this paper. And a new concept of relative sensitivity coefficient was also brought forward to analyze the defect inspectability. Through analyzing the relative sensitivity coefficient, it was found that the inspectability of different parameters describing the size and position of the defect was different, and the inspection carried out at the time with maximum surface temperature difference was more desirable than that in steady heat transfer state. Both of the transient and steady inspections were tested by a series of numerical experiments, and the experimental results are consistent with the analysis of relative sensitivity coefficient. Besides, the numerical experiments have certified the effectiveness of the Chaos-LM hybrid algorithm, and show that the identification results are stable and globally optimal.